
Giorgio Agugiaro

Last update: 1 September 2024

Introduction to Linux

2

License

This presentation is licensed under the Creative Commons License CC
BY-NC-SA 4.0. According to CC BY-NC-SA 4.0 permission is granted to
share this document, i.e. copy and redistribute the material in any
medium or format, and to adapt it, i.e. remix, transform, and build
upon the material under the following conditions:

• Attribution: You must give appropriate credit, provide a link to the license, and indicate if
changes were made. You may do so in any reasonable manner, but not in any way that suggests
the licensor endorses you or your use.

• NonCommercial: You may not use the material for commercial purposes.
• ShareAlike: If you remix, transform, or build upon the material, you must distribute your

contributions under the same license as the original.
• No additional restrictions: You may not apply legal terms or technological measures that legally

restrict others from doing anything the license permits.

https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode

Index

3

• Linux in a nutshell

• The terminal and the shell(s)

• File system

• File system permissions

• Data streams

• Processes

• Scheduling jobs

• Installation of software applications

• Text editors

• Bash shell scripting

• Further resources

Index

4

• Linux in a nutshell

• The terminal and the shell(s)

• File system

• File system permissions

• Data streams

• Processes

• Scheduling jobs

• Installation of software applications

• Text editors

• Bash shell scripting

• Further resources

Linux in a nutshell

5

• Linux (more precisely: GNU/Linux1) is a computer operating system
that uses the GNU software and the Linux kernel

• GNU is a collection of free and open software packages which can be
either used as a stand-alone operating system or can be used in parts
in other operating systems – as in the case of GNU/Linux. Richard
Stallman started the development of GNU in 1984

– Examples: GCC (GNU C Compiler), GNU Bash shell, etc.

• The Linux kernel was originally developed by Linus Torvalds and first
released in 1991. A kernel is a computer program, always loaded in
memory, and is the core of a computer's operating system. It controls
all resources and applications, and it facilitates the interaction
between hardware and software.

Linux in a nutshell

Terminal & shell(s)

File system

File system

permissions

Data streams

Processes

Scheduling jobs

Software install

Text editors

Bash shell scripting

Further resources

1 If you are curious, you can read here more on the long-standing naming controversy:
https://en.wikipedia.org/wiki/GNU/Linux_naming_controversy

https://en.wikipedia.org/wiki/GNU
https://en.wikipedia.org/wiki/Richard_Stallman
https://en.wikipedia.org/wiki/Richard_Stallman
https://en.wikipedia.org/wiki/Linux_kernel
https://en.wikipedia.org/wiki/Linus_Torvalds
https://en.wikipedia.org/wiki/GNU/Linux_naming_controversy

Linux in a nutshell

6

Linux is used in personal computers, but not only!

You'll find it, among the rest, in:

• all Android devices

• routers, NAS, TVs, eReaders, smart watches, cars...

• the majority of servers, world-wide (96%)

• high-performance computers, world-wide (nearly 100%)

• ...the International Space Station!!

Linux in a nutshell

Terminal & shell(s)

File system

File system

permissions

Data streams

Processes

Scheduling jobs

Software install

Text editors

Bash shell scripting

Further resources

Image source: https://www.asi.it/wp-content/uploads/2019/03/iss.jpg

https://www.asi.it/wp-content/uploads/2019/03/iss.jpg

Linux in a nutshell

7

• Linux comes packaged in a so-called Linux distribution (short: "distro") that
assembles the kernel, the GNU tools and a selection of several other software
packages tailored for specific needs

• Some common distributions are Debian, Fedora, openSUSE, ArchLinux, Gentoo.
Other distros "derive" from the previous ones: Ubuntu, Red Hat Enterprise Linux,
SUSE Linux Enterprise, Manjaro Linux, etc.

• Some distros are tailored to servers, other to personal computers. The latter ones
generally come with a Desktop Environment (DE), consisting of several programs with
a Graphical User Interface (GUI)

• There are different Desktop Environments. Among the most common ones are KDE
Plasma, GNOME, MATE, LXDE, etc.

Linux in a nutshell

Terminal & shell(s)

File system

File system

permissions

Data streams

Processes

Scheduling jobs

Software install

Text editors

Bash shell scripting

Further resources

Im
ag

e
ad

ap
te

d
 f

ro
m

: h
tt

p
s:

//
n

ix
w

in
d

o
w

s.
w

o
rd

p
re

ss
.c

o
m

/w
p-

co
n

te
n

t/
u

p
lo

ad
s/

2
0

1
5

/0
2

/l
in

u
x-

d
is

tr
o

-s
ti

ck
er

s.
p

n
g

https://nixwindows.wordpress.com/wp-content/uploads/2015/02/linux-distro-stickers.png

Users

8

Just like in other operating systems, there are two types of users. Each type of users is
granted different privileges. They are:

• root: is the "name" of the main superuser in Linux. A superuser is a special account
user used for system administration. The "root" user has all rights and permissions to
all files and programs in all modes (single- or multi-user). The "root" user should never
ever be used to perform operations on the computer other than system
administration!

• "Normal" users: are all other users that are not "root". They have limited privileges on
what files/directories they can read and write, and what programs they can run.
Normal users are associated to a user name, such as "giorgio", "luke", "ashoka", etc,
and to a user group.

– In many Linux distributions (like Ubuntu), the sudo command enables "normal" users to run
programs with the security privileges of another user, by default the superuser "root".
For example: updating the software requires the following two commands to be run by the
"root" user – unless a "normal" user adds the sudo command as follows:

sudo apt update
sudo apt upgrade

Linux in a nutshell

Terminal & shell(s)

File system

File system

permissions

Data streams

Processes

Scheduling jobs

Software install

Text editors

Bash shell scripting

Further resources

Working with Linux

9

• Just like in other operating systems, you can interact with Linux in two ways:

• Using the terminal to write commands that the system will carry out

– Generally faster, but requires to know the command names and their syntax

– You can cluster and run multiple commands together by writing and running a script

• Using the GUI elements (windows, buttons, etc.)

– More user-friendly, commands can be run clicking buttons or interacting with the GUI

– It may be more difficult to automatize repetitive operations using the GUI elements (some
commands may not have a GUI at all…)

– GUI elements may not always be available (e.g. working remotely on a server)

• See next slide for an example

Linux in a nutshell

Terminal & shell(s)

File system

File system

permissions

Data streams

Processes

Scheduling jobs

Software install

Text editors

Bash shell scripting

Further resources

Working with Linux

10

Example: Create a new folder in your home directory

Linux in a nutshell

Terminal & shell(s)

File system

File system

permissions

Data streams

Processes

Scheduling jobs

Software install

Text editors

Bash shell scripting

Further resources

Here, you interact with the GUI
elements using mouse and keyboard
to create a new folder ("folder_1").

Here, using the terminal (KDE Konsole),
you type the command

mkdir folder_2

to create a new folder ("folder_2")

Index

11

• Linux in a nutshell

• The terminal and the shell(s)

• File system

• File system permissions

• Data streams

• Processes

• Scheduling jobs

• Installation of software applications

• Text editors

• Bash shell scripting

• Further resources

The terminal and the shell(s)

12

• The terminal (also called the console, or command line interface (CLI)) is a tool to
interact with computers by typing textual commands on your keyboard. A terminal is
the "window" in which you type commands. It handles user input and output

• A terminal uses a shell. A shell is a program that takes the commands you type and
translates them into actions that the operating system has to perform. There are
several shells, the most common ones are:

– bash (Bourne-Again Shell): the most common one on Linux (and used in this guide)

• the bash prompt is $ for a regular user and # for root (see next slide)

– zsh (z shell): Extended bash with many improvements

• the zsh prompt is % for a regular user and # for root

– csh (C-shell): It mimic the C language as the Linux kernel is predominantly written in C

• the csh prompt is % for a regular user and # for root

– ksh (KornShell): implements and extends features from the C shell and Bourne shell

• the ksh prompt is $ for a regular user and # for root

– …more shells can be found here

Please note: while the terms "terminal" and "shell" are often colloquially used interchangeably, they
are not the same!

Linux in a nutshell

Terminal & shell(s)

File system

File system

permissions

Data streams

Processes

Scheduling jobs

Software install

Text editors

Bash shell scripting

Further resources

CSH

https://en.wikipedia.org/wiki/Unix_shell

Whenever you open a terminal, you get the following information when using the Bash
shell:

The terminal and the Bash shell

13

Linux in a nutshell

Terminal & shell(s)

File system

File system

permissions

Data streams

Processes

Scheduling jobs

Software install

Text editors

Bash shell scripting

Further resources

Your user name
(e.g. "giorgio")

The computer name
(e.g. "Kubuntu-22")

The current working directory

Please note: the tilde (~) stands for your home directory (e.g. /home/username)
In this example, we are working in the directory /home/Giorgio/Documents
(see next slides on the file system for more details)

The command prompt (where you write
your commands).
Please note the $ symbol, telling us that
we are using the Bash shell as normal user

Shell commands

14

Most of the shell commands have a common structure, i.e:

command + options + arguments

Example: The next command copies the source_directory and all its contents to the
dest_directory.

cp -rf ./source_directory ./dest_directory

• command: cp (copy)

• options: -rf = -r recursively, -f force

• arguments: ./source_directory ./dest_directory

If you do not remember the correct syntax? No problem!

• Most of the commands have a "--help" option

– Examples: cp --help, rm --help, mkdir --help

• The man ("manual") command loads and shows the extensive manual

– Example: man cp will load the on-line manual of the "cp" command

Linux in a nutshell

Terminal & shell(s)

File system

File system

permissions

Data streams

Processes

Scheduling jobs

Software install

Text editors

Bash shell scripting

Further resources

Some useful shell commands

15

These are very common Bash commands
• exit: exit and close the terminal window

• echo <text>: displays a line of text

• cat <file> ("concatenate"): print file (or group of files) to screen

• head <file>: print the first lines of a file

• tail <file>: print the last lines of a file

• which <command: locate a command

• whereis <command>: locate the binary, source, and manual page files for a command

• locate <file>: find file(s) by name, quickly, generally using an index created/updated by updatedb

• touch <file>: create a new empty file

With many commands you can use also wildcards, such as:
• ?: Matches any single character

• *: Matches any string of characters

• [set]: Matches any character in the set. Example: [adf] will match any occurrence of a, d, f

• [!set]: Matches any character NOT in the set of characters

Examples
• ls *.txt -> list all files having the extension like "txt"

Linux in a nutshell

Terminal & shell(s)

File system

File system

permissions

Data streams

Processes

Scheduling jobs

Software install

Text editors

Bash shell scripting

Further resources

Index

16

• Linux in a nutshell

• The terminal and the shell(s)

• The file system

• File system permissions

• Data streams

• Processes

• Scheduling jobs

• Installation of software applications

• Text editors

• Bash shell scripting

• Further resources

File system

17

• In Linux (and other Unix-like operating systems)
files are written in a hierarchical file system

• Such file system is standardised and is called
Filesystem Hierarchy Standard (FHS)

• In the FHS, all files and directories appear under
the root directory /, even if they are stored on
different physical or virtual devices

• The first-level directories names (/bin, /usr/,
/home, /var) are consistent over the Unix-like
operating systems, and are generally used in the
same way

Linux in a nutshell

Terminal & shell(s)

File system

File system

permissions

Data streams

Processes

Scheduling jobs

Software install

Text editors

Bash shell scripting

Further resources

Im
ag

e
so

u
rc

e:
 h

tt
p

s:
//

w
w

w
.g

ee
ks

fo
rg

ee
ks

.o
rg

/l
in

u
x-

fi
le

-h
ie

ra
rc

h
y-

st
ru

ct
u

re

https://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard
https://www.geeksforgeeks.org/linux-file-hierarchy-structure

File system

18

Some of these directories are particularly relevant:

• / (aka "root directory"): Base directory of the entire file system hierarchy

• /root: the "root" user’s home directory

• /home: all users have their own home directory. Normal users can write ONLY inside their home
directory (and subdirectories).

– Example: /home/giorgio, /home/leia, /home/kylo, etc.

• /sbin and /usr/sbin: contains program executables ("binaries") that are used for system
administration and can be run only by a user with superuser privileges

• /bin and /usr/bin: contains the majority of the binaries that are installed by default and that can
be run by "normal" users.

• /usr (and subdirectories): contains the majority of the user utilities and applications

• /lib: software libraries necessary for the binaries in /bin and /usr/bin

• /media: mount points for removable devices (USB sticks, CD-ROMs, etc.)

• /mnt: temporarily mounted file systems

• /dev/null: is a special device, used to dispose unwanted output streams of a process, or as a
convenient empty file for input streams. This is usually done by redirection (see later for examples)

Linux in a nutshell

Terminal & shell(s)

File system

File system

permissions

Data streams

Processes

Scheduling jobs

Software install

Text editors

Bash shell scripting

Further resources

File system

19

Some common Bash commands to work with the file system
• pwd ("print working directory"): tell you in which directory in which you currently are

• tree: show all subdirectories from the directory you are in

• ls ("list short"): list files and subdirectories in the directory you are in (no details)

• ll ("list long", alternative for ls -l): list files and subdirectories in the directory you are in (with all details)

• cd <directory> ("change directory"): change to another directory

• mkdir <directory> ("make directory"): create a new directory

• rmdir <directory> ("remove directory"): remove an (empty) directory

• cp <source-file> <destination-file> ("copy"): create a copy of a file

• rm <file> or <directory> ("remove"): remove a file or a populated directory

• mv <file> <new-destination> ("move"): move a file to another directory

Navigation in the file system
• . (dot): is the current directory

• .. (two dots): is the parent directory

• ~ (tilde): stands for your own home directory

Linux in a nutshell

Terminal & shell(s)

File system

File system

permissions

Data streams

Processes

Scheduling jobs

Software install

Text editors

Bash shell scripting

Further resources

File system

20

Examples:

Linux in a nutshell

Terminal & shell(s)

File system

File system

permissions

Data streams

Processes

Scheduling jobs

Software install

Text editors

Bash shell scripting

Further resources

From root directory /,
print all subdirectories
of first level

Perform a series of operations using pwd, touch, cd, mkdir, ls, rmdir commands.
You can see the output right after the command has been issued

File system

21

Linux in a nutshell

Terminal & shell(s)

File system

File system

permissions

Data streams

Processes

Scheduling jobs

Software install

Text editors

Bash shell scripting

Further resources

Alternatively, you can use for example mc
("Midnight Commander"), which is a very powerful
file manager with comes with a simple but very
practical text-based GUI

File system

22

Linux in a nutshell

Terminal & shell(s)

File system

File system

permissions

Data streams

Processes

Scheduling jobs

Software install

Text editors

Bash shell scripting

Further resources

Finally, you can use of course also KDE Dolphin, which
comes as default file manager in Kubuntu

Index

23

• Linux in a nutshell

• The terminal and the shell(s)

• File system

• File system permissions

• Data streams

• Processes

• Scheduling jobs

• Installation of software applications

• Text editors

• Bash shell scripting

• Further resources

File system permissions

24

Every file is described by a 10-character string (called mode string) in which:
• Character 1: type of file

• Characters 2-4: privileges of the file owner on that file

• Characters 5-7: privileges of the owner's group on that file

• Characters 8-10: privileges of "everybody else" on that file

Type of file can be:
• -: a file

• d: a directory

• l: a symbolic link

• b: a block special file or block device (e.g. /dev/hda, a hard disk)

• c: character special file (e.g. /dev/tty, the terminal of the current process)

• p: a pipe (a temporary file between two linked commands – see later for more examples)

• s: a socket

Type of permission can be:
• r: readable, -: it is not readable

• w: writable, -: it is not writable

• x: executable, or permission to enter a directory, -: it is not executable

Linux in a nutshell

Terminal & shell(s)

File system

File system

permissions

Data streams

Processes

Scheduling jobs

Software install

Text editors

Bash shell scripting

Further resources

File system permissions

25

Using the command ls -la (or ll -a), you get all details about each file/directory in the
current directory (including the hidden files, with the -a parameter).

Linux in a nutshell

Terminal & shell(s)

File system

File system

permissions

Data streams

Processes

Scheduling jobs

Software install

Text editors

Bash shell scripting

Further resources

Character 1: type of file
(here: "d" and "-"

Characters 2-4: file owner's
permissions

Characters 5-7: owner
group's permissions

Characters 5-7: others'
permissions

Owner's username

Owner's group name

Size

Timestamp

File/directory name

File system permissions

26

The types of permissions can be also expressed numerically. In this way, all possible
combinations can be expressed with a digit between 0 and 7.

• r: read = 4

• w: write = 2

• x: execute = 1

Both representations, literal and numeric,
are commonly used, especially with chmod
("change mode"), a command used to change
the permissions of a file or a directory.

Linux in a nutshell

Terminal & shell(s)

File system

File system

permissions

Data streams

Processes

Scheduling jobs

Software install

Text editors

Bash shell scripting

Further resources

So
u

rc
e:

 h
tt

p
s:

//
en

.w
ik

ip
ed

ia
.o

rg
/w

ik
i/

C
h

m
o

d

https://en.wikipedia.org/wiki/Chmod

File system permissions

27

The command chmod can be issued in several ways. The permissions to add, remove or
change can be expressed using either numerical or symbolic modes.

Here are some examples for using the numerical mode.

• chmod 664 file_name.txt: file_name.txt will receive read and write (6) permissions for both the owner and the
owner's group, and only read permissions for the "others"

• chmod 700 file_name.txt: file_name.txt will receive read, write and execution (7) permissions for the owner and
zero permission for the owner's group and the "others"

Please refer to the manual, or --help for more details

Linux in a nutshell

Terminal & shell(s)

File system

File system

permissions

Data streams

Processes

Scheduling jobs

Software install

Text editors

Bash shell scripting

Further resources

https://en.wikipedia.org/wiki/Chmod

File system permissions

28

The command chmod can be issued in several ways. The permissions to add, remove or
change can be expressed using either numerical or symbolic modes.

The symbolic mode is composed of three components, which are combined to form a
single string of text. Specific modes can be modified, leaving the others untouched

chmod [references][operator][modes] file

Examples:
• chmod u+wx filename: add write and execute privileges to filename for the owner

• chmod a-w filename: remove write privigege from filename for everybody

• chmod ug=rwx filename: set the privileges of filename to be read, write and execute only for the owner and the
owner's group.

Linux in a nutshell

Terminal & shell(s)

File system

File system

permissions

Data streams

Processes

Scheduling jobs

Software install

Text editors

Bash shell scripting

Further resources

Source: https://en.wikipedia.org/wiki/Chmod

https://en.wikipedia.org/wiki/Chmod
https://en.wikipedia.org/wiki/Chmod

File system permissions

29

Of course, you can also change the permissions of files and directories using the GUI

Linux in a nutshell

Terminal & shell(s)

File system

File system

permissions

Data streams

Processes

Scheduling jobs

Software install

Text editors

Bash shell scripting

Further resources
In Kubuntu, the default file
manager is Dolphin.

Here, for example, a file and
a directory are selected. You
can right-click on them and
select "Properties".

In the GUI windows, you can
set the permissions, as if you
were using the chmod
command.

Index

30

• Linux in a nutshell

• The terminal and the shell(s)

• File system

• File system permissions

• Data streams

• Processes

• Scheduling jobs

• Installation of software applications

• Text editors

• Bash shell scripting

• Further resources

Data streams

31

A data stream is, as the name says, a stream of data —especially text data— being
passed from one file, device, or program to another.

The GNU Utilities, the Linux core utilities, and many other command-line tools exchange
data and perform their work based on data streams.

In Linux and other Unix-like OSes, the use of Standard Input/Output (STDIO) is a
fundamental way to exchange data between programs: Programs implementing STDIO
use standardised file handles for input and output instead of files stored on a disk (or
elsewhere).

STDIO is a buffered data stream, and its function is to stream data from the output of
one program/file/device to the input of another program/file/device.

Linux in a nutshell

Terminal & shell(s)

File system

File system

permissions

Data streams

Processes

Scheduling jobs

Software install

Text editors

Bash shell scripting

Further resources

Data streams

32

There are 3 STDIO data streams:

• STDIN (File handle 0) is the standard input which is usually input from the keyboard.
STDIN can be redirected from any file, including device files, instead of the keyboard.

• STDOUT (File handle 1) is the standard output which sends the data stream to the
display by default. It is common to redirect STDOUT to a file or to pipe it to another
program for further processing.

• STDERR (File handle 2) is the standard error data stream, i.e. where the program
sends error and diagnostics messages. STDERR is also usually sent to the display. If
STDOUT is redirected to a file, STDERR continues to be displayed on the screen.
STDERR can also be redirected to the same or passed on to the next transformer
program in a pipeline.

Linux in a nutshell

Terminal & shell(s)

File system

File system

permissions

Data streams

Processes

Scheduling jobs

Software install

Text editors

Bash shell scripting

Further resources

Data streams: Redirection

33

Linux includes redirection commands for each stream. These can be used to write
STDIN, STDOUT and STDERR to a file. If you write to a file that does not exist, a new file
with that name will be created prior to writing.

Commands with a single bracket overwrite the destination’s existing contents.

> : send to standard output

< : read from standard input

2> : send to standard error

Commands with a double bracket append (do not overwrite) the destination’s existing
contents:

>> append to standard output

<< read from standard input, line by line

2>> append to standard error

Linux in a nutshell

Terminal & shell(s)

File system

File system

permissions

Data streams

Processes

Scheduling jobs

Software install

Text editors

Bash shell scripting

Further resources

Data streams: Redirection

34

Examples:
ls /home/giorgio/home/Documents > giorgio_documents.txt : List all files/directories in the given directory and write
the results to a file

mkdir '' 2> error.txt : creating a directory with an empty name is not permitted. The error message will be written to
file error.txt

echo Write this message to a new file > file.txt

echo Append this line to an existing file >> file.txt : Example to highlight the difference between overwriting and
appending when using > and >> redirectors

Assuming we have a script called "script.sh":

script.sh < input_file : run the script and read from input_file

script.sh > output_file : run the script and write to output_file

script.sh < input_file > output_file : run the script, read from input_file and write to output_file

script.sh 2> error_file : run the script and write the STDERR to error_file

script.sh > all_output_file 2>&1 : run the script and write both STDOUT and STDERR to all_output_file. Please note: In
Bash, the last command can be also written as script.sh >& all_output_file or script.sh &> all_output_file

script.sh > /dev/null : Discard the STDOUT, i.e. redirect it to the special device /dev/null

script.sh 2> /dev/null : Discard the STDERR, i.e. redirect it to the special device /dev/null

Linux in a nutshell

Terminal & shell(s)

File system

File system

permissions

Data streams

Processes

Scheduling jobs

Software install

Text editors

Bash shell scripting

Further resources

Data streams: Pipes

35

Pipes are a particular type of stream redirection. They are used to redirect a stream
from one program directly to another. When a program’s STIOUT is sent to another
through a pipe, the first program’s output will be used as STIN to the second, rather than
being printed to the terminal. Only the data returned by the second program will be
displayed.

In Linux, and other Unix-like OSes, the pipe is represented by a vertical bar "|"

The general syntax is:

command_1 | command_2 | command_3 | | command_N

Pipes are unidirectional i.e., data flows from left to right through the pipeline.

More details: https://en.wikipedia.org/wiki/Pipeline_(Unix)

Linux in a nutshell

Terminal & shell(s)

File system

File system

permissions

Data streams

Processes

Scheduling jobs

Software install

Text editors

Bash shell scripting

Further resources

https://en.wikipedia.org/wiki/Pipeline_(Unix)

Data streams: Filters

36

Filters are a class of programs that take plain text as standard input, transforms it into a
meaningful format, and then returns it as standard output. They are commonly used
with output piped from another program.

cut: extract sections from each line of input, usually from a file

find: returns files with filenames that match the argument passed to find

grep: returns text that matches the string pattern passed to grep

sort: prints the lines of its input in sorted order

tee: redirects standard input to both standard output and one or more files

tr: finds-and-replaces one string with another

uniq: outputs the text with adjacent identical lines collapsed to one, unique line of text

wc ("word count"): counts characters, lines, and words

More details: https://en.wikipedia.org/wiki/Filter_(software)

Linux in a nutshell

Terminal & shell(s)

File system

File system

permissions

Data streams

Processes

Scheduling jobs

Software install

Text editors

Bash shell scripting

Further resources

https://en.wikipedia.org/wiki/Filter_(software)

Data streams: Filters

37

Examples:

ls | grep image1.jpg : List all files and directories, pass them to grep to search for image1.jpg

ls -l sort : List all files and directories and return them sorted

cat long_text.txt | head -15 | tail -5 : selects the first 15 lines, from which the last 5 lines will be eventually displayed

cat energy_result.csv | grep "PV production" | tee ned.txt : reads the content of the energy_result file, send it to grep
to search for the "PV production" values and finally, with tee, display them in the terminal AND save them to file
ned.txt

Linux in a nutshell

Terminal & shell(s)

File system

File system

permissions

Data streams

Processes

Scheduling jobs

Software install

Text editors

Bash shell scripting

Further resources

Chaining operators

38

The data stream operators are part of a larger family: the chaining operators. They are
used chain multiple commands together. They are:

| (pipe) : The output of the first command acts as input to the second command (see previous slides)

>,>>, < (redirection) : Redirects the output of a command (see previous slides)

\ (concatenation) : Allows to concatenate long commands spanning over several lines in the shell

() (precedence) : Allows to define the precedence order to execute commands

& (ampersand) : Run a process/script/command in the background

&& (logical "and") : The command following && is only executed if the command preceding && has been successfully
executed

|| (logical "or") : The command succeeding || is only executed if the command preceding || has failed.

&&-|| (and-or) : Combination of the && and || operators, similar to the if-then-else statement.

! (not) : Negates an expression within a command

; (semi-colon) : The command following ; is executed even if the command preceding ; has failed

{} (combination) : The execution of the command list inside {} depends on the execution of the first command in the
list

Linux in a nutshell

Terminal & shell(s)

File system

File system

permissions

Data streams

Processes

Scheduling jobs

Software install

Text editors

Bash shell scripting

Further resources

Chaining operators

39

Examples:

ping -c20 3d.bk.tudelft.nl & : Ping the webpage for 20 times, run the process in the background (test it also without &
to see the difference: can you interact with the terminal?)

who ; pwd ; ls : Simply run the 3 commands one after the other, no matter if one fails or succeeds

echo "Print this!" && echo -e "\nThe first echo command succeeded" : The second echo is run only if the first one
succeeds

mkdir "" || echo -e "\nThe first command failed" : the echo is run only because the first command fails (you cannot
create a nameless directory)

ping -c1 3d.bk.tudelft.nl && echo “Successful ping” || echo “Failed ping" : ping the URL, if there is an answer then
execute the first echo, else execute the second echo

rm !(*.jpg) : remove (delete) all files that do not have a .jpg extension

ping -c1 www.brickset.com && { echo -e "\n\n*** The webpage exists!" ; firefox www.brickset.com & } : Ping the
webpage. Then consider the list of commands inside {}. Run the second in the list only if the first (echo) succeeds.
Beware the syntax: please note the empty spaces after the { and before the } parentheses

Linux in a nutshell

Terminal & shell(s)

File system

File system

permissions

Data streams

Processes

Scheduling jobs

Software install

Text editors

Bash shell scripting

Further resources

Index

40

• Linux in a nutshell

• The terminal and the shell(s)

• File system

• File system permissions

• Data streams

• Processes

• Scheduling jobs

• Installation of software applications

• Text editors

• Bash shell scripting

• Further resources

Processes

41

A running instance of a program is called a process

• Example: If you have opened two terminal windows, most likely you have two processes of the
same program (e.g. "Konsole"). Each terminal loads a shell program (e.g. the Bash shell): each
running shell is itself another process. Whenever you issue a command from the shell (e.g. "cp"),
the corresponding program is executed in a new process, too.

Processes in Linux are organized as a tree.

• The init process is the root process

• Each process as its own ID (PID, process ID)

• Each process has the ID of the parent process (PPID, parent process ID)

Multiple processes, running in parallel or in series, can be grouped in jobs. A job is a
scheduled process or set of processes.

Linux in a nutshell

Terminal & shell(s)

File system

File system

permissions

Data streams

Processes

Scheduling jobs

Software install

Text editors

Bash shell scripting

Further resources

Processes

42

In Linux, there are 5 types of processes.

• Parent process: The process created by the user on the terminal. All processes have a
parent process. If it was created directly by the user, then the parent process will be
the kernel process

• Child process: A child process is a process that is created by another process known as
the parent process

• Orphan process: A child process becomes an orphan process when the parent gets
executed before its own child process. In such a case, the orphan process has a “Init”
process (PID 0) as its PPID

• Zombie process: A process that is already dead but shows up in process status.
Zombie processes have zero CPU consumption

• Daemon process: A system-related background processes. These processes often run
the permissions of root and service requests from other processes. A Daemon process
often runs in the background. A Daemon process can be recognized if it has “?” in its
TTY field (see later)

Linux in a nutshell

Terminal & shell(s)

File system

File system

permissions

Data streams

Processes

Scheduling jobs

Software install

Text editors

Bash shell scripting

Further resources

Processes

43

Linux processes can be run in foreground or in background

• Foreground processes are started by the user and are the default. They accept
command-line input and output it to the computer screen. A running foreground
process prevents the start or execution of other, following processes because the
command prompt will not be available until the currently running program completes
its processing and comes out.

• Background processes run, as the name says, in the background. They are non-
interactive and do not need keyboard input. While one process is running in the
background, it is possible to start another process from the terminal.
By adding a single ampersand ("&") at the end of a command, the command can be
executed as a background process

Example:

– sleep 5 && echo "Ciao!": Force the terminal to wait for 5 seconds, then print the message to the screen.
Nothing can be done in-between in the terminal.

– sleep 10 && echo "Ciao!" &: Note the last, single &! After issuing the command, you can still interact with the
terminal. After 5 seconds, the message will be printed to the screen.

Linux in a nutshell

Terminal & shell(s)

File system

File system

permissions

Data streams

Processes

Scheduling jobs

Software install

Text editors

Bash shell scripting

Further resources

Processes

44

Useful BASH commands for processes
ps ("process status"): list processes, with different levels of information, e.g. ps -fu

ps <pid>: check status of a single process, identified by its PID

pstree: print the tree of the processes

kill <pid>: end/terminate a process, identified by its PID

top: display Linux processes

htop: an interactive system control, process viewer, and process manager

jobs: display status of jobs

Miscellaneous commands:
free: display the total amount of free and used memory (RAM) on the Linux system

df: display the free disk space(Hard Disk) on all the file systems

Linux in a nutshell

Terminal & shell(s)

File system

File system

permissions

Data streams

Processes

Scheduling jobs

Software install

Text editors

Bash shell scripting

Further resources

Processes

45

USER: Process owner

PID: The process ID

%CPU, %MEM: Percentage of CPU/memory used

VZS: Virtual memory size, virtual memory used by the process (in kB)

RSS: Resident set size, physical memory used by the process (in kB)

TTY: The terminal associated with the process

STAT: The state code of the process; there are many values, but the common ones are S (sleeping) and R (running)

START: The time when the process started

TIME: The CPU time consumed by the process

COMMAND: Command issued that created the process

More details: https://it.wikipedia.org/wiki/Ps_(Unix)

Linux in a nutshell

Terminal & shell(s)

File system

File system

permissions

Data streams

Processes

Scheduling jobs

Software install

Text editors

Bash shell scripting

Further resources

This is the output of command

ps -fu

https://it.wikipedia.org/wiki/Ps_(Unix)

Processes

46

Linux in a nutshell

Terminal & shell(s)

File system

File system

permissions

Data streams

Processes

Scheduling jobs

Software install

Text editors

Bash shell scripting

Further resources

htop is interactive system control,
process viewer, and process manager

Processes

47

Linux in a nutshell

Terminal & shell(s)

File system

File system

permissions

Data streams

Processes

Scheduling jobs

Software install

Text editors

Bash shell scripting

Further resources

Finally, you also can use the "System
monitor" to manage the processes
directly from the Kubuntu GUI

Index

48

• Linux in a nutshell

• The terminal and the shell(s)

• File system

• File system permissions

• Data streams

• Processes

• Scheduling jobs

• Installation of software applications

• Text editors

• Bash shell scripting

• Further resources

Scheduling jobs

49

A process or a group of processes (a job) can be schedule to be run at a certain point in
time, or with a certain schedule. Relevant commands are:
at: execute commands for one time at a specified time (in future)

atq (at queue): print the list of user's pending jobs

cron: a Daemon process. It reads every minute the crontab table and executes the scheduled jobs

crontab: show and manage the table containing the list of scheduled jobs. In particular

o crontab -l: list all jobs in the crontab table

o crontab -e: open the editor to add, remove, change the scheduled jobs in the crontab table

o crontab -r: remove the complete list of scheduled jobs

Please note: For at and cron there are several command options and some ancillary
commands. Please refer to the documentation for further details. The next slides will
provide only some simple examples

at: https://en.wikipedia.org/wiki/At_(Unix)

cron: https://en.wikipedia.org/wiki/Cron

Linux in a nutshell

Terminal & shell(s)

File system

File system

permissions

Data streams

Processes

Scheduling jobs

Software install

Text editors

Bash shell scripting

Further resources

https://en.wikipedia.org/wiki/At_(Unix)
https://en.wikipedia.org/wiki/Cron

Scheduling jobs: at

50

The command at can be run in different ways: Example 1

Linux in a nutshell

Terminal & shell(s)

File system

File system

permissions

Data streams

Processes

Scheduling jobs

Software install

Text editors

Bash shell scripting

Further resources
Using piping, you echo a message that will be written to a text file. This operation is to be carried out in 2 minutes from now. A job
is therefore created.

You can check the pending job with atq.

After 2 minutes, you can check that the file has been written and contains the original message.

Scheduling jobs: at

51

The command at can be run in different ways: Example 2

Linux in a nutshell

Terminal & shell(s)

File system

File system

permissions

Data streams

Processes

Scheduling jobs

Software install

Text editors

Bash shell scripting

Further resources

Here you perform the same operation as before, however using at's interactive prompt that allows you to enter which commands
to run at the specified time. A warning stating which shell the command will use is also printed.

You can exit the interactive prompt and save the scheduled job by pressing Ctrl + D. You can cancel the job with Ctrl + C.

Scheduling jobs: cron

52

Scheduling jobs for cron is consists in adding lines to the crontan table. Assume that you
have a shell script named "script.sh" that you want to run at regular intervals. The
generic syntax to add a job entry to crontab is

A B C D E COMMAND

with:

A: Minutes range from 0 to 59; default is * (i.e. all values)

B: Hours range from 0 to 23; default is * (i.e. all values)

C: Days range from 0 to 31; default is * (i.e. all values)

D: Months range from 0 to 12; default is * (i.e. all values)

E: Days of the week range from 0 to 7 (Sunday is 0 or 7); default is * (i.e. all values)

COMMAND: command to be executed.

Example:

Line to add to run the script every day of the year exactly at 18:00 (6:00 PM)

0 18 * * * /home/giorgio/script.sh

Linux in a nutshell

Terminal & shell(s)

File system

File system

permissions

Data streams

Processes

Scheduling jobs

Software install

Text editors

Bash shell scripting

Further resources

Scheduling jobs: cron

53

Run crontab -e to edit the crontab table and add a line for each job at the end of the file.
Save and exit. Suggestion: always use ABSOLUTE PATHS to your script.

Linux in a nutshell

Terminal & shell(s)

File system

File system

permissions

Data streams

Processes

Scheduling jobs

Software install

Text editors

Bash shell scripting

Further resources

Scheduling jobs: cron

54

Run crontab -l to print to screen the crontab table. Here you can see that the job has
been added and will be carried out at the set time.

Linux in a nutshell

Terminal & shell(s)

File system

File system

permissions

Data streams

Processes

Scheduling jobs

Software install

Text editors

Bash shell scripting

Further resources

Index

55

• Linux in a nutshell

• The terminal and the shell(s)

• File system

• File system permissions

• Data streams

• Processes

• Scheduling jobs

• Installation of software applications

• Text editors

• Bash shell scripting

• Further resources

Installation of software applications

56

• In Linux there are several ways to install a software application

• The easiest, and by far the most common way, is to install software applications from
a repository. A repository is a public server that hosts software packages

• A software package (or just: package) is a collection of files and metadata that
contains a specific software application. The purpose is to simplify the process of
distributing, installing, and managing software on a computer system

• There are different types of software package formats, depending on the distribution.
The two most common ones are rpm and deb. The rpm format is tailored to Red Hat
Linux and its derivatives, while the deb format is for Debian-based distributions, such
as (K)Ubuntu

• A Linux distribution provides a command, and usually a GUI-based program, that
retrieves the software from a repository and installs it onto your computer

– It is conceptually the same as searching for and installing an app on your smartphone from the
Android or Apple stores!

Linux in a nutshell

Terminal & shell(s)

File system

File system

permissions

Data streams

Processes

Scheduling jobs

Software install

Text editors

Bash shell scripting

Further resources

Installation from a repository

57

• The installation from a repository can be carried out, as usual, in two ways:

a) Using the terminal

b) Using a GUI based software installation program

• When using the terminal, you only need to know the exact name of the package
containing the program you want to install

• Before installing the software itself, it is a good habit to refresh the database(s) on
your machine that contains the list of applications available in the repositories

• All these operations require superuser privileges, but can be carried out also by a
normal user thanks to sudo

– In (K)Ubuntu, you use the apt command to perform software installation and other related
operations

• Alternatively, you can use the GUI-based package manager to search for the package
name, and to install or remove it without using the terminal at all

– In Kubuntu, the GUI-based package manager is called Discover

– In Ubuntu, the GUI-based package manager is called Ubuntu Software Center

Linux in a nutshell

Terminal & shell(s)

File system

File system

permissions

Data streams

Processes

Scheduling jobs

Software install

Text editors

Bash shell scripting

Further resources

Installation from a repository

58

Example 1:

Let's assume we want to install the file manager Midnight Commander. Its package
name is mc. Let's open a terminal and type (you will be asked your password):

sudo apt update

sudo apt install mc

That's all! The first line updates the database(s) containing information on the
software in the repositories. The second line downloads and installs Midnight
Commander. At the end, you can type mc, and the program will be launched. Using
command chaining, the above commands can be also written as

sudo apt update && sudo apt install mc

Finally, if you want to remove/uninstall a software package (e.g. mc), you simply type:

sudo apt remove mc

Linux in a nutshell

Terminal & shell(s)

File system

File system

permissions

Data streams

Processes

Scheduling jobs

Software install

Text editors

Bash shell scripting

Further resources

Installation from a repository

59

Example 2:

Let's assume we want to install Visual Studio Code. But you do not know the exact
package name. Let's use Discover in Kubuntu.Linux in a nutshell

Terminal & shell(s)

File system

File system

permissions

Data streams

Processes

Scheduling jobs

Software install

Text editors

Bash shell scripting

Further resources

1) Launch Discover.

2) In the search field, write
"Visual Studio Code"

3) The results will appear
here. Pick the one you are
looking for

4) Click on the "Install" button and
wait till the application is installed.
You will be requested your password.

Done!

Installation from a repository

60

Example 2:

Launch Visual Studio Code
Linux in a nutshell

Terminal & shell(s)

File system

File system

permissions

Data streams

Processes

Scheduling jobs

Software install

Text editors

Bash shell scripting

Further resources

5b) …or by typing

code

in the terminal window. Please note
the (optional) & afterwards!

5a) You can now run Visual Studio
Code either by selecting it from the
application menu…

Installation from a repository

61

Example 2:

Uninstall Visual Studio Code
Linux in a nutshell

Terminal & shell(s)

File system

File system

permissions

Data streams

Processes

Scheduling jobs

Software install

Text editors

Bash shell scripting

Further resources

If you want to uninstall Visual Studio
Code (or any other program), open
Discover, search for the package,
and...

…click on the "Remove" button. Your
password may be requested.

Index

62

• Linux in a nutshell

• The terminal and the shell(s)

• File system

• File system permissions

• Data streams

• Processes

• Scheduling jobs

• Installation of software applications

• Text editors

• Bash shell scripting

• Further resources

• In terms of command-line text editors, the two most well-known
are vim and nano

• Kate is the text editor shipped with KDE (e.g. in Kubuntu), while
gedit is the "equivalent" that comes with GNOME (e.g. in Ubuntu).

• But there are many more, even several extensions for Visual
Studio Code that provide support for the Bash shell!

Text editors

63

• A fundamental application that can't miss in a Linux machine is a text editor. As a matter of
fact, there are several text editors for Linux. Some are based on the command-line, others
exploit the GUI possibilities of the Desktop Environment they are part ofLinux in a nutshell

Terminal & shell(s)

File system

File system

permissions

Data streams

Processes

Scheduling jobs

Software install

Text editors

Bash shell scripting

Further resources

Further details: https://en.wikipedia.org/wiki/Category:Unix_text_editors

https://en.wikipedia.org/wiki/Category:Unix_text_editors

Text editors: Nano

64

In the realm of command-line text editors, nano (more precisely: GNU nano) is less
powerful than vim, but much easier to learn and use. It can be started simply typing
nano or nano <file_name>. It provides a two-line shortcut bar at the bottom of the
screen which lists the available commands.

Some of these commands are:

CTRL-R: Instert contents from another

file to the current buffer

CTRL-G: Display the help screen

CTRL-O: Write to a file

CTRL-X: Exit a file

CTRL-C: Show cursor position

Linux in a nutshell

Terminal & shell(s)

File system

File system

permissions

Data streams

Processes

Scheduling jobs

Software install

Text editors

Bash shell scripting

Further resources

Text editors: Kate

65

Linux in a nutshell

Terminal & shell(s)

File system

File system

permissions

Data streams

Processes

Scheduling jobs

Software install

Text editors

Bash shell scripting

Further resources

Text editors: Visual Studio Code

66

Linux in a nutshell

Terminal & shell(s)

File system

File system

permissions

Data streams

Processes

Scheduling jobs

Software install

Text editors

Bash shell scripting

Further resources

Index

67

• Linux in a nutshell

• The terminal and the shell(s)

• File system

• File system permissions

• Data streams

• Processes

• Scheduling jobs

• Installation of software applications

• Text editors

• Bash shell scripting

• Further resources

Shell scripting

68

• Shell scripting consists in turning a series of commands into a script that can be run as
many times as needed Shell scripting is primarily meant to automate repetitive tasks,
test solutions, and increase efficiency

• Examples of tasks that benefit from shell scripting can be performing backups of files,
monitoring system resources, and managing user accounts

• A shell script is in essence a text file with a list of commands that instruct an operating
system to perform certain operations

• A shell script must be read and interpreted by a shell program

• A shell script file has generally a .sh extension

• A shell script can be run in two ways:

– As argument of the shell binary/executable file (e.g. /bin/bash)

• Example: /bin/bash ./my_script.sh

– As an executable file, which however must be made executable with chmod u+x my_script.sh

• Example: ./my_script.sh

Linux in a nutshell

Terminal & shell(s)

File system

File system

permissions

Data streams

Processes

Scheduling jobs

Software install

Text editors

Bash shell

scripting

Further resources

Bash shell scripting

69

• Shell script files must begin with the so-called shebang. The first line of the script
contains the absolute path to the shell interpreter. This is relevant especially when
there exist different shells in the same machine

• The shebang is written as #!/bin/bash (for the Bash shell)

• The name comes from the combination of the terms sharp (#) and bang (!). Besides
shebang, it is also known as sha-bang, hashbang, etc.

More details: https://en.wikipedia.org/wiki/Shebang_(Unix)

Linux in a nutshell

Terminal & shell(s)

File system

File system

permissions

Data streams

Processes

Scheduling jobs

Software install

Text editors

Bash shell

scripting

Further resources

Example of a simple shell script the just prints a
message to the screen. The first line is the shebang

https://en.wikipedia.org/wiki/Shebang_(Unix)

Bash shell scripting

70

Please note: Proving a full guide to shell scripting is beyond the purpose of this
introdutory guide. Only the basics will be mentioned here. A good starting point is the
open-source book "Introduction to Bash scripting" by Bobby Iliev, available also on
GitHub at https://github.com/bobbyiliev/introduction-to-bash-scripting.

Comments:

Comments must be preceded by the # symbol. Example:
This is a comments

Variables:

Variables are generally declared using the = symbol and no spaces before and after it.
Variables are accessed using the $ symbol, or (better) using also curly brackets {}
Example: set_a_var.sh

#!/bin/bash

my_var="Ciao!"

my_list="Luke Leia Anakin Obi-Wan"

echo "The value of my_var is: ${my_var}"

echo "The value of my_list is: ${my_list}"

Linux in a nutshell

Terminal & shell(s)

File system

File system

permissions

Data streams

Processes

Scheduling jobs

Software install

Text editors

Bash shell

scripting

Further resources

https://github.com/bobbyiliev/introduction-to-bash-scripting

Bash shell scripting

71

Variables: "Arithmetic expansion"

Bash allows for some maths on integers. For floating-point numbers, you can pipe the
expression to bc (basic calculator).

$((expression)) : This operator called "arithmetic expansion". It is used to perform some (integer-based) maths in
Bash. (()) evaluates the expression, $ stores the result

Example:

a=2

echo "$((${a}**2))" # prints a*a = 4

b=2.5

echo "${b}^2" | bc -l " # prints b*b = 6.25

echo "$((${b}**2))" # will cause an error: no integer!

i=10

echo "$((++i))" # will return 11

Linux in a nutshell

Terminal & shell(s)

File system

File system

permissions

Data streams

Processes

Scheduling jobs

Software install

Text editors

Bash shell

scripting

Further resources

Syntax Description

++x, x++ Pre and post-increment

--x, x-- Pre and post-decrement

+, -, *, / Addition, subtraction, multiplication, division

%, ** or ^ Modulo (remainder) and exponentiation

&&, ||, ! Logical AND, OR, and negation

&, |, ^, ~ Bitwise AND, OR, XOR, and negation

<=, <, >,
=>

Less than or equal to, less than, greater than, and
greater than or equal to comparison operators

==, != Equality and inequality comparison operators

Bash shell scripting

72

User input: User input (e.g. from the keyboard) can be assigned to a variable using read.
Example: origin.sh

#!/bin/bash

echo "From which country do you come from?"

read country

echo "You come from ${country}"

Bash arguments: You can pass arguments to your Bash scripts. They can be accessed
from the script using $1,$2,$3, ..., $n, with n the order they are passed. $@ is a
reference to ALL passed arguments.
Example: fruit_salad.sh

#!/bin/bash

echo "First fruit is $1"

echo "Second fruit is $2"

echo "Third fruit is $3"

echo "All fruits are $@"

Linux in a nutshell

Terminal & shell(s)

File system

File system

permissions

Data streams

Processes

Scheduling jobs

Software install

Text editors

Bash shell

scripting

Further resources

Bash shell scripting

73

Arrays: An array is initialised by assigning values separated by spaces and enclosed in
round parentheses (). You can access array values in different ways.

Example: arrays.sh

my_array=("X-Wing" "A-Wing" "B-Wing" "Y-Wing")

echo "All spaceships: ${my_array[@]}"

echo "Indices of items are: ${!my_array[@]}"

echo "Number of items in the array is: ${#my_array[@]}"

echo "First spaceship is: ${my_array[0]}" # 0-index based!

echo "Second spaceship is: ${my_array[1]}"

echo "Last spaceship is: ${my_array[-1]}"

echo "First two spaceships are: ${my_array[@]:0:2}" # 2 is excluded

Linux in a nutshell

Terminal & shell(s)

File system

File system

permissions

Data streams

Processes

Scheduling jobs

Software install

Text editors

Bash shell

scripting

Further resources

Bash shell scripting

74

Conditional expressions: the [[compound command and the [built-in command are
used to test file attributes and perform string and arithmetic comparisons.

(Some) examples of file expressions:

[[-e ${file}]] : returns true if file exists

[[-d ${file}]] : returns true if file exists and is a directory

[[-x ${file}]] : returns true if file is executable

(Some) examples of string expressions:

[[${string1} == ${string2}]] : returns true if the strings are equal

[[${string1} != ${string2}]] : returns true if the strings are different

Linux in a nutshell

Terminal & shell(s)

File system

File system

permissions

Data streams

Processes

Scheduling jobs

Software install

Text editors

Bash shell

scripting

Further resources

Bash shell scripting

75

Conditional expressions (ctd)

(Some) examples of arithmetic operators:

[[${arg1} -eq ${arg2}]] : returns true if the 2 numbers are equal

[[${arg1} -ne ${arg2}]] : returns true if the 2 numbers are different

[[${arg1} -gt ${arg2}]] : returns true if arg1 is greater than arg2

[[${arg1} -le ${arg2}]] : returns true if arg1 is less or equal than arg2

[[test_case_1]] && [[test_case_2]] : returns true if both cases are true (AND)

[[test_case_1]] || [[test_case_2]] : returns true if at least one of the cases is true (OR)

Examples of Exit status operators:

[[$? -eq 0]] : returns true if the command was successful without any errors

[[$? -gt 0]] : returns true if the command was not successful or had errors

Linux in a nutshell

Terminal & shell(s)

File system

File system

permissions

Data streams

Processes

Scheduling jobs

Software install

Text editors

Bash shell

scripting

Further resources

Bash shell scripting

76

Conditional statements: The conditional expressions seen in the previous slides can be
used to build conditional statements such as if-then, if-then-else, etc.

Example: if_then.sh

#!/bin/bash

correct_answer="Vienna"

echo "What is the capital of Austria?"

read answer

if [${answer} == ${correct_answer}]

then

echo "Correct!"

fi # please note the "fi" to close the statement

Linux in a nutshell

Terminal & shell(s)

File system

File system

permissions

Data streams

Processes

Scheduling jobs

Software install

Text editors

Bash shell

scripting

Further resources

Bash shell scripting

77

Conditional statement (ctd)

Example: if_then_else.sh

#!/bin/bash

correct_answer="Glera"

echo "Prosecco wine is made with grapes named...?"

read answer

if [${answer} == ${correct_answer}]

then

echo "Correct! You deserve a glass of Prosecco! :-)"

else

echo "Oh no, you seem to lack some basic knowledge :-("

fi

Linux in a nutshell

Terminal & shell(s)

File system

File system

permissions

Data streams

Processes

Scheduling jobs

Software install

Text editors

Bash shell

scripting

Further resources

Bash shell scripting

78

Conditional statement (ctd)

Example: case.sh

#!/bin/bash

echo "Enter the name of a Pixar movie:"

read -r pixar_movie # -r allows to have spaces in input

case ${pixar_movie} in

"Toy Story 5")

echo "${pixar_movie} will be released in 2026"

;;

"Toy Story" | "Toy Story 2" | "Toy Story 3" | "Toy Story 4")

echo "${pixar_movie} tells the adventures of Woody, Buzz etc."

;;

"Monsters Inc.")

echo "With ${pixar_movie} you'll fall in love with Boo!"

;;

*)

echo "At the moment, I can't tell you anything about ${pixar_movie}..."

;;

esac

Linux in a nutshell

Terminal & shell(s)

File system

File system

permissions

Data streams

Processes

Scheduling jobs

Software install

Text editors

Bash shell

scripting

Further resources

Bash shell scripting

79

Loop statements: In Bash there are loops, while-loops, and until-loops. Beware: you
loop over lists! Arrays, if applicable, must be cast to lists.

Example: loop.sh

#!/bin/bash

fruits_list="apples kiwis bananas strawberries"

fruits_array=("mangos" "peaches" "apricots" "pears")

echo "*** Iterating over a list"

for fruit in ${fruits_list}

do

echo "Printing: ${fruit}"

done

echo -e "\n"

echo "*** Iterating over an array"

for fruit in ${fruits_array[@]} # Array cast to list!

do

echo "Printing: ${fruit}"

done

echo -e "\n"

Linux in a nutshell

Terminal & shell(s)

File system

File system

permissions

Data streams

Processes

Scheduling jobs

Software install

Text editors

Bash shell

scripting

Further resources

Bash shell scripting

80

Example: while_until_loop.sh

#!/bin/bash

echo "*** Example of a while-loop"

counter=1

while [[$counter -le 5]]

do

echo "While-loop counter is: ${counter}"

((counter++))

done

echo -e "\n*** Example of an until-loop"

counter2=1

until [[$counter2 -gt 5]]

do

echo "Until-loop counter is: ${counter2}"

((counter2++))

done

Linux in a nutshell

Terminal & shell(s)

File system

File system

permissions

Data streams

Processes

Scheduling jobs

Software install

Text editors

Bash shell

scripting

Further resources

Bash shell scripting

81

Loop statements (ctd):

Inside a loop statement, you can use commands continue and break. With continue you
can stop the current iteration of the loop and start with the next one.

Example: continue.sh

#!/bin/bash

for n in 1 2 3 4 5

do

if [${n} == 3]

then

echo "Skipping value ${n}"

continue

else

n_squared=$(($n*$n)) # $(()) is called "arithmetic expansion"

echo "Current value is: ${n}, its square is: ${n_squared}"

fi

done

Linux in a nutshell

Terminal & shell(s)

File system

File system

permissions

Data streams

Processes

Scheduling jobs

Software install

Text editors

Bash shell

scripting

Further resources

Bash shell scripting

82

Loop statements (ctd):

With break you can exit a loop if a certain condition is met.

Example: break.sh

#!/bin/bash

for n in 1 2 3 4 5

do

if [${n} == 3]

then

echo "Skipping value ${n}"

echo -e "\nExiting loop!"

break

else

n_squared=$(($n*$n)) # $(()) is called "arithmetic expansion"

echo "Current value is: ${n}, its square is: ${n_squared}"

fi

done

Linux in a nutshell

Terminal & shell(s)

File system

File system

permissions

Data streams

Processes

Scheduling jobs

Software install

Text editors

Bash shell

scripting

Further resources

Index

83

• Linux in a nutshell

• The terminal and the shell(s)

• File system

• File system permissions

• Data streams

• Processes

• Scheduling jobs

• Installation of software applications

• Text editors

• Bash shell scripting

• Further resources

Further resources

84

• This Introduction is part of TU Delft's GeoGeeks

– https://tudelft3d.github.io/geogeeks/

• "Introduction to Linux", by the Linux Froudation

– https://training.linuxfoundation.org/training/introduction-to-linux/

• "Linux Tutorial", by GeeksforGeeks

– https://www.geeksforgeeks.org/linux-tutorial/

• "Introduction to Linux", by CodeAcademy

– https://www.codecademy.com/learn/introduction-to-linux

Linux in a nutshell

Terminal & shell(s)

File system

File system

permissions

Data streams

Processes

Scheduling jobs

Software install

Text editors

Bash shell scripting

Further resources

https://tudelft3d.github.io/geogeeks/
https://training.linuxfoundation.org/training/introduction-to-linux/
https://www.geeksforgeeks.org/linux-tutorial/
https://www.codecademy.com/learn/introduction-to-linux

Dr. Giorgio Agugiaro

g.agugiaro@tudelft.nl

3D Geoinformation Group

TU Delft

The Netherlands

https://3d.bk.tudelft.nl/gagugiaro

Acknowledgements

Clara García-Sánchez and Akshay Patil (TU Delft)

mailto:g.agugiaro@tudelft.nl
https://3d.bk.tudelft.nl/gagugiaro

	Slide 1: Introduction to Linux
	Slide 2: License
	Slide 3: Index
	Slide 4: Index
	Slide 5: Linux in a nutshell
	Slide 6: Linux in a nutshell
	Slide 7: Linux in a nutshell
	Slide 8: Users
	Slide 9: Working with Linux
	Slide 10: Working with Linux
	Slide 11: Index
	Slide 12: The terminal and the shell(s)
	Slide 13: The terminal and the Bash shell
	Slide 14: Shell commands
	Slide 15: Some useful shell commands
	Slide 16: Index
	Slide 17: File system
	Slide 18: File system
	Slide 19: File system
	Slide 20: File system
	Slide 21: File system
	Slide 22: File system
	Slide 23: Index
	Slide 24: File system permissions
	Slide 25: File system permissions
	Slide 26: File system permissions
	Slide 27: File system permissions
	Slide 28: File system permissions
	Slide 29: File system permissions
	Slide 30: Index
	Slide 31: Data streams
	Slide 32: Data streams
	Slide 33: Data streams: Redirection
	Slide 34: Data streams: Redirection
	Slide 35: Data streams: Pipes
	Slide 36: Data streams: Filters
	Slide 37: Data streams: Filters
	Slide 38: Chaining operators
	Slide 39: Chaining operators
	Slide 40: Index
	Slide 41: Processes
	Slide 42: Processes
	Slide 43: Processes
	Slide 44: Processes
	Slide 45: Processes
	Slide 46: Processes
	Slide 47: Processes
	Slide 48: Index
	Slide 49: Scheduling jobs
	Slide 50: Scheduling jobs: at
	Slide 51: Scheduling jobs: at
	Slide 52: Scheduling jobs: cron
	Slide 53: Scheduling jobs: cron
	Slide 54: Scheduling jobs: cron
	Slide 55: Index
	Slide 56: Installation of software applications
	Slide 57: Installation from a repository
	Slide 58: Installation from a repository
	Slide 59: Installation from a repository
	Slide 60: Installation from a repository
	Slide 61: Installation from a repository
	Slide 62: Index
	Slide 63: Text editors
	Slide 64: Text editors: Nano
	Slide 65: Text editors: Kate
	Slide 66: Text editors: Visual Studio Code
	Slide 67: Index
	Slide 68: Shell scripting
	Slide 69: Bash shell scripting
	Slide 70: Bash shell scripting
	Slide 71: Bash shell scripting
	Slide 72: Bash shell scripting
	Slide 73: Bash shell scripting
	Slide 74: Bash shell scripting
	Slide 75: Bash shell scripting
	Slide 76: Bash shell scripting
	Slide 77: Bash shell scripting
	Slide 78: Bash shell scripting
	Slide 79: Bash shell scripting
	Slide 80: Bash shell scripting
	Slide 81: Bash shell scripting
	Slide 82: Bash shell scripting
	Slide 83: Index
	Slide 84: Further resources
	Slide 85

