e
¢ TUDelit
3D0geoinfo

%
TUDelft

Introduction to Linux

Giorgio Agugiaro

Last update: 1 September 2024

<3
TUDelft
3Dgeoinfo

License

This presentation is licensed under the Creative Commons License CC

BY-NC-SA 4.0. According to CC BY-NC-SA 4.0 permission is granted to @ @ @
share this document, i.e. copy and redistribute the material in any @
medium or format, and to adapt it, i.e. remix, transform, and build

upon the material under the following conditions:

* Attribution: You must give appropriate credit, provide a link to the license, and indicate if
changes were made. You may do so in any reasonable manner, but not in any way that suggests
the licensor endorses you or your use.

* NonCommercial: You may not use the material for commercial purposes.

* ShareAlike: If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

* No additional restrictions: You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.

https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode

3
TUDelit |ndex
3Dgeoinfo

Linux in a nutshell

The terminal and the shell(s)

File system

File system permissions

Data streams

Processes

Scheduling jobs

Installation of software applications

Text editors

Bash shell scripting

Further resources

3
TUDelit |ndex
3Dgeoinfo

Linux in a nutshell

The terminal and the shell(s)

File system

File system permissions

Data streams

Processes

Scheduling jobs

Installation of software applications

Text editors

Bash shell scripting

Further resources

<3
TUDelft
3Dgeoinfo

Linux in a nutshell
Terminal & shell(s)
File system

File system
permissions

Data streams
Processes
Scheduling jobs
Software install
Text editors

Bash shell scripting
Further resources

Linux in a nutshell

* Linux (more precisely: GNU/Linux!) is a computer operating system
that uses the GNU software and the Linux kernel

* GNU is a collection of free and open software packages which can be
either used as a stand-alone operating system or can be used in parts
in other operating systems — as in the case of GNU/Linux. Richard
Stallman started the development of GNU in 1984
— Examples: GCC (GNU C Compiler), GNU Bash shell, etc.

* The Linux kernel was originally developed by Linus Torvalds and first
released in 1991. A kernel is a computer program, always loaded in
memory, and is the core of a computer's operating system. It controls
all resources and applications, and it facilitates the interaction
between hardware and software.

L1f you are curious, you can read here more on the long-standing naming controversy:
https://en.wikipedia.org/wiki/GNU/Linux _naming controversy

https://en.wikipedia.org/wiki/GNU
https://en.wikipedia.org/wiki/Richard_Stallman
https://en.wikipedia.org/wiki/Richard_Stallman
https://en.wikipedia.org/wiki/Linux_kernel
https://en.wikipedia.org/wiki/Linus_Torvalds
https://en.wikipedia.org/wiki/GNU/Linux_naming_controversy

<3
J TUDelft
3Dgeoinfo

Linux in a nutshell
Terminal & shell(s)
File system

File system
permissions

Data streams
Processes
Scheduling jobs
Software install
Text editors

Bash shell scripting
Further resources

Linux in a nutshell

Linux is used in personal computers, but not only!

You'll find it, among the rest, in:

all Android devices

routers, NAS, TVs, eReaders, smart watches, cars...

the majority of servers, world-wide (96%)
high-performance computers, world-wide (nearly 100%)
...the International Space Station!!

ST

Image source: https://www.asi.it/wp-content/uploads/2019/03/iss.ipg

https://www.asi.it/wp-content/uploads/2019/03/iss.jpg

P . .
TUDelft Linux in a nutshell

3Dgeoinfo
* Linux comes packaged in a so-called Linux distribution (short: "distro") that
assembles the kernel, the GNU tools and a selection of several other software
Linux in a nutshell packages tailored for specific needs
Tgrminal & shell(s) * Some common distributions are Debian, Fedora, openSUSE, ArchLinux, Gentoo.
F!Ie system Other distros "derive" from the previous ones: Ubuntu, Red Hat Enterprise Linux,
File system
D SUSE Linux Enterprise, Manjaro Linux, etc.

permissions
Data streams A @ [£) B[]S

A - S o miby
Processes . umu

Scheduling jobs

Y * Some distros are tailored to servers, other to personal computers. The latter ones

Text editors generally come with a Desktop Environment (DE), consisting of several programs with
Bash shell scripting a Graphical User Interface (GUI)
Further resources * There are different Desktop Environments. Among the most common ones are KDE
Plasma, GNOME, MATE, LXDE, etc.
N1 4 7
Ll @ A
W GNomer =l //

Image adapted from: https://nixwindows.wordpress.com/wp-content/uploads/2015/02/linux-distro-stickers.png

https://nixwindows.wordpress.com/wp-content/uploads/2015/02/linux-distro-stickers.png

'i';u Delft |Users

3Dgeoinfo

Just like in other operating systems, there are two types of users. Each type of users is
granted different privileges. They are:

Linuxinanutshell « root: is the "name" of the main superuser in Linux. A superuser is a special account
Terminal & shell(s) user used for system administration. The "root" user has all rights and permissions to

F!Ie system all files and programs in all modes (single- or multi-user). The "root" user should never
File system .

permissions ever be used to perform operations on the computer other than system

SelE Seere administration!

Processes * "Normal" users: are all other users that are not "root". They have limited privileges on
Scheduling jobs what files/directories they can read and write, and what programs they can run.

?ofiwzr? install Normal users are associated to a user name, such as "giorgio", "luke", "ashoka", etc,
ext editors

Bash shell scripting and to a user group.

Further resources — In many Linux distributions (like Ubuntu), the sudo command enables "normal" users to run
programs with the security privileges of another user, by default the superuser "root".
For example: updating the software requires the following two commands to be run by the
"root" user — unless a "normal" user adds the sudo command as follows:

sudo apt update
sudo apt upgrade

<3
TUDelft
3Dgeoinfo

Linux in a nutshell
Terminal & shell(s)
File system

File system
permissions

Data streams
Processes
Scheduling jobs
Software install
Text editors

Bash shell scripting
Further resources

Working with Linux

Just like in other operating systems, you can interact with Linux in two ways:

Using the terminal to write commands that the system will carry out
— Generally faster, but requires to know the command names and their syntax
— You can cluster and run multiple commands together by writing and running a script

Using the GUI elements (windows, buttons, etc.)
— More user-friendly, commands can be run clicking buttons or interacting with the GUI

— It may be more difficult to automatize repetitive operations using the GUI elements (some
commands may not have a GUI at all...)

— GUI elements may not always be available (e.g. working remotely on a server)

See next slide for an example

<3
TUDelft
3Dgeoinfo

Linux in a nutshell
Terminal & shell(s)
File system

File system
permissions

Data streams
Processes
Scheduling jobs
Software install
Text editors

Bash shell scripting
Further resources

10

Working with Linux

Example: Create a new folder in your home directory

E

File Edit View

[Z] Desktop

[Documents
< Downloads
3 Music

£ Pictures

22 Public

P9 shared_data
£ Templates
H Videos

[@ RecentFiles

PP Recent Locations

Home — Dolphin

Tools Settings Help

[Desktop

[Documents
< Downloads
53 Music

Ed Pictures

22 Public

P9 shared_data
i Templates
H Videos

? v A X
File
split Q

A Size Modified

New Folder — Dolphin
Create new folder in /home/giorgio/:

folder_1

‘ + Create New

[Open Folder With

24 SortBy

98 View Mode

B open Terminal Shift+F4
2 Activities
9 Folde ® Assign Tags

[} Compress

[Properties Alt+Return

Here, you interact with the GUI
elements using mouse and keyboard
to create a new folder ("folder_1").

E3 Link to File or Directory...

[Link to Application...

giorgio

Edit View

® Cancel

aKubuntu-22:

~ : bash — Konsole

Bookmarks
$ mkdir folder_2[]

Plugins Settings Help

Here, using the terminal (KDE Konsole),
you type the command

mkdir folder_2

to create a new folder ("folder_2")

pre———— -

¢ us i - 311%:73;4
B0 h&o0E R g @ EesrR

2
TUDelit |ndex
3Dgeoinfo

Linux in a nutshell
The terminal and the shell(s)

File system

File system permissions

Data streams

Processes

Scheduling jobs

Installation of software applications

Text editors

Bash shell scripting

Further resources

11

<3
TUDelft
3Dgeoinfo

Linux in a nutshell
Terminal & shell(s)
File system

File system
permissions

Data streams
Processes
Scheduling jobs
Software install
Text editors

Bash shell scripting
Further resources

12

The terminal and the shell(s)

* The terminal (also called the console, or command line interface (CLI)) is a tool to
interact with computers by typing textual commands on your keyboard. A terminal is
the "window" in which you type commands. It handles user input and output

* Aterminal uses a shell. A shell is a program that takes the commands you type and
translates them into actions that the operating system has to perform. There are
several shells, the most common ones are:

bash (Bourne-Again Shell): the most common one on Linux (and used in this guide) @BASH
* the bash promptis $ for a regular user and # for root (see next slide)
zsh (z shell): Extended bash with many improvements T
* the zsh promptis % for a regular user and # for root
csh (C-shell): It mimic the C language as the Linux kernel is predominantly writteninC CSH
* the csh promptis % for a regular user and # for root
ksh (KornShell): implements and extends features from the C shell and Bourne shell ksh
* the ksh promptis S for a regular user and # for root

...more shells can be found here

Please note: while the terms "terminal" and "shell" are often colloquially used interchangeably, they
are not the same!

https://en.wikipedia.org/wiki/Unix_shell

<3
TUDelft
3Dgeoinfo

Linux in a nutshell
Terminal & shell(s)
File system

File system
permissions

Data streams
Processes
Scheduling jobs
Software install
Text editors

Bash shell scripting
Further resources

13

The terminal and the Bash shell

Whenever you open a terminal, you get the following information when using the Bash
shell:

. Documents : bash — Konsole o X

File Edit View Bookmarks Plugins Settings Help

giorgio@Kubuntu-22:~/Documents$ l

Your user name
(e.g. "giorgio") The command prompt (where you write

your commands).
Please note the $ symbol, telling us that

The computer name we are using the Bash shell as normal user

(e.g. "Kubuntu-22")

The current working directory

Please note: the tilde (~) stands for your home directory (e.g. /home/username)
In this example, we are working in the directory /home/Giorgio/Documents
(see next slides on the file system for more details)

<3
TUDelft
3Dgeoinfo

Linux in a nutshell
Terminal & shell(s)
File system

File system
permissions

Data streams
Processes
Scheduling jobs
Software install
Text editors

Bash shell scripting
Further resources

14

Shell commands

Most of the shell commands have a common structure, i.e:

command + options + arguments

Example: The next command copies the source_directory and all its contents to the
dest_directory.

cp -rf ./source_directory ./dest_directory

* command: cp (copy)

* options: -rf = -r recursively, -f force

* arguments: ./source_directory ./dest_directory

If you do not remember the correct syntax? No problem!
* Most of the commands have a "--help" option
— Examples: cp --help, rm --help, mkdir --help
* The man ("manual") command loads and shows the extensive manual

— Example: man cp will load the on-line manual of the "cp" command

<3
TUDelft
3Dgeoinfo

Linux in a nutshell
Terminal & shell(s)
File system

File system
permissions

Data streams
Processes
Scheduling jobs
Software install
Text editors

Bash shell scripting
Further resources

15

Some useful shell commands

These are very common Bash commands

exit: exit and close the terminal window

echo <text>: displays a line of text

cat <file> ("concatenate"): print file (or group of files) to screen

head <file>: print the first lines of a file

tail <file>: print the last lines of a file

which <command: locate a command

whereis <command>: locate the binary, source, and manual page files for a command

locate <file>: find file(s) by name, quickly, generally using an index created/updated by updatedb
touch <file>: create a new empty file

With many commands you can use also wildcards, such as:

?: Matches any single character

*: Matches any string of characters

[set]: Matches any character in the set. Example: [adf] will match any occurrence of a, d, f
[Iset]: Matches any character NOT in the set of characters

Examples

Is *.txt -> list all files having the extension like "txt"

<3
TUDelft
3Dgeoinfo

16

Index

* Linux in a nutshell
* The terminal and the shell(s)

The file system

File system permissions

Data streams

Processes

Scheduling jobs

Installation of software applications

Text editors

Bash shell scripting

Further resources

<3
J TUDelft
3Dgeoinfo

Linux in a nutshell
Terminal & shell(s)
File system

File system
permissions

Data streams
Processes
Scheduling jobs
Software install
Text editors

Bash shell scripting
Further resources

17

File system

* In Linux (and other Unix-like operating systems)
files are written in a hierarchical file system

* Such file system is standardised and is called
Filesystem Hierarchy Standard (FHS)

* In the FHS, all files and directories appear under
the root directory /, even if they are stored on
different physical or virtual devices

* The first-level directories names (/bin, /usr/,
/home, /var) are consistent over the Unix-like
operating systems, and are generally used in the
same way

/

Root
Directory

=>

Essential User Command Binaries
Static Files of the boot loader
Device Files
Host specific system configuration
User home Directories
Shared Libraries

Removable Madia

Mounted Filesystem

g
:
‘
|
;
g

Add-on

System Binaries

Data for service from system

Temporary Files

User Utilities and Applications

Image source: https://www.geeksforgeeks.org/linux-file-hierarchy-structure

Process Information

https://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard
https://www.geeksforgeeks.org/linux-file-hierarchy-structure

<3
TUDelft
3Dgeoinfo

Linux in a nutshell
Terminal & shell(s)
File system

File system
permissions

Data streams
Processes
Scheduling jobs
Software install
Text editors

Bash shell scripting
Further resources

18

File system

Some of these directories are particularly relevant:

/ (aka "root directory"): Base directory of the entire file system hierarchy
[root: the "root" user’s home directory

/home: all users have their own home directory. Normal users can write ONLY inside their home
directory (and subdirectories).

— Example: /home/giorgio, /home/leia, /home/kylo, etc.

/sbin and /usr/sbin: contains program executables ("binaries") that are used for system
administration and can be run only by a user with superuser privileges

/bin and /usr/bin: contains the majority of the binaries that are installed by default and that can
be run by "normal" users.

Jusr (and subdirectories): contains the majority of the user utilities and applications
/lib: software libraries necessary for the binaries in /bin and /usr/bin

/media: mount points for removable devices (USB sticks, CD-ROMs, etc.)

/mnt: temporarily mounted file systems

/dev/null: is a special device, used to dispose unwanted output streams of a process, or as a
convenient empty file for input streams. This is usually done by redirection (see later for examples)

<3
TUDelft
3Dgeoinfo

Linux in a nutshell
Terminal & shell(s)
File system

File system
permissions

Data streams
Processes
Scheduling jobs
Software install
Text editors

Bash shell scripting
Further resources

19

File system

Some common Bash commands to work with the file system

pwd ("print working directory"): tell you in which directory in which you currently are

tree: show all subdirectories from the directory you are in

Is ("list short"): list files and subdirectories in the directory you are in (no details)

Il ("list long", alternative for Is -I): list files and subdirectories in the directory you are in (with all details)
cd <directory> ("change directory"): change to another directory

mkdir <directory> ("make directory"): create a new directory

rmdir <directory> ("remove directory"): remove an (empty) directory

cp <source-file> <destination-file> ("copy"): create a copy of a file

rm <file> or <directory> ("remove"): remove a file or a populated directory

mv <file> <new-destination> ("move"): move a file to another directory

Navigation in the file system

. (dot): is the current directory
.. (two dots): is the parent directory
~ (tilde): stands for your own home directory

n I bash — Konsole WA X

<3 .
TUDelft Flle System File Edit [Miew | Bookmarks Plugins Settings Help

SDgeomfo ibuntu-22:/% tree -L 1

Examples: > usr/bin
led Documents : bash — Konsole oo X From root directory /,

Linux in a nutshell File Edit Vview Bookmarks Plugins Settings Help _ print all subdirectories

Terminal & shell(s) ; Lor o " . s$ pwd of first level

File system ._ rgio@Kubuntu-22: lents$ touch test_file.txt

: g gio@Kubuntu-2 nents$ 1s

Flle SyStem test_file.

permissions s

Data streams

Processes

Scheduling jobs
Software install
Text editors

Bash shell scripting
Further resources

Perform a series of operations using pwd, touch, cd, mkdir, Is, rmdir commands.
You can see the output right after the command has been issued

20

Alternatively, you can use for example mc
("Midnight Commander"), which is a very powerful
file manager with comes with a simple but very
practical text-based GUI

<3
TUDelft
3Dgeainfo

File system

d ~:mc — Konsole

File Edit View

<l

.n Name

Bookmarks Plugins Settings Help

L[] L[]
|Modify time . Name Modify time
.. jul 31 21:52

| size

Linux in a nutshell

Terminal & shell(s)
File system

File system
permissions

Data streams
Processes
Scheduling jobs
Software install
Text editors

Bash shell scripting
Further resources

/ .cache

/.config

/. kde

/.local

/Desktop

JDocuments

/Downloads

JMusic

/Pictures

JPublic

/Templates

/Videos

/snap
Xauthority
.bash_history
.bash_logout
.bashrc
.face
.face.icon
.gtkrc-2.@
.lesshst
.profile
.selected_editor
.sudo_as_admin_successful
.vboxclient-clipboard-ttyl-control.pid
.vboxclient-clipboard-ttyl-service.pid

4096
4096
4896
4096
4096
4096
4096
4896
4096
4096
4096
4096
4896
55/
ELEE:
220
3771
14965
5|
265
20
807
66

[0}

5

5

aug
aug
jul
jul
jul
aug
jul
jul
jul
jul
jul
jul
jul
aug
aug
jul
jul
jul
jul
aug
aug
jul
aug
jul
aug
aug

2
2
31
31
31
1
31
31
31
31
31
31
31
1
2
31
31
31
31
1
2
31
2
31
1
1

19:35
19:35
22:05
22:085
22:05
19:37
22:85
22:05
22:085
22:05
22:@5
22:85
22:19
87:11
16:39
21:52
21:52
21:52
21:52
07:11
17:58
21:52
19:32
22:09
07:11
07:11

/.cache

/.config

/. kde

/.local

/Desktop

JDocuments

J/Downloads

/Music

/Pictures

JPublic

/Templates

fVideos

/snap
.Xauthority
.bash_history
.bash_logout
.bashrc
.face
.face. icon
.gtkrc-2.@
.lesshst
.profile
.selected_editor
.sudo_as_admin_successful
.vboxclient-clipboard-ttyl-control.pid
.vboxclient-clipboard-ttyl-service.pid

aug
aug
jul
jul
jul
aug
jul
jul
jul
jul
jul
jul
jul
aug
aug
jul
jul
jul
jul
aug
aug
jul
aug
jul
aug
aug

2
&l
31
31
31
1
31
31
31
31
31
31
31
1
&l
31
31
31
31
1
2
31
&l
31
1
1

19:35
19:35
22:085
22:85
22:85
19:37
22:05
22:085
22:85
22:85

UP--DIR

Hint: To mark directories on the select dialog box,

giorgio@Kubuntu-22:~$ |J
1 2 3

append a

5

30G/48G (62%) —

slash.

UP--DIR

30G/48G (62%) —

<3
TUDelft
3Dgeoinfo

Linux in a nutshell
Terminal & shell(s)
File system

File system
permissions

Data streams
Processes
Scheduling jobs
Software install
Text editors

Bash shell scripting
Further resources

22

File system

Finally, you can use of course also KDE Dolphin, which
comes as default file manager in Kubuntu

Home — Dolphin

File Edit View Go Tools Settings Help

< 58 &5 98 G | B3 /homergiorgio/ aviv [spiit Q

> [0 Desktop Name A Size Modified Type

> [Documents (O Desktop ? i

>~ < Downloads >~ [Documents

>~ J3 Music X Downloads

>~ [Pictures 9 Music

>~ & Public EJ Pictures

> B snap 23 Public

> A Templates > B snap i
>~ H Videos A Templates

H videos

script.sh

Type:

shell script
Size: 256 B
Modified: Today at 19:22
Accessed: Today at 19:22

Created: Today at 18:49

script.sh (shell script, 256 B) Zoom: 30,1 GiB free Ratinn P S S

0:41
B 0 us & 02~203»2024 =l
ol B gl E R EEsRA)

2
TUDelit |ndex
3Dgeoinfo

Linux in a nutshell

The terminal and the shell(s)

File system

File system permissions

Data streams

Processes

Scheduling jobs

Installation of software applications

Text editors

Bash shell scripting

Further resources

23

<3
TUDelft
3Dgeoinfo

Linux in a nutshell
Terminal & shell(s)
File system

File system
permissions
Data streams
Processes
Scheduling jobs
Software install
Text editors

Bash shell scripting
Further resources

24

File system permissions

Every file is described by a 10-character string (called mode string) in which:
* Character 1: type of file

* Characters 2-4: privileges of the file owner on that file

* Characters 5-7: privileges of the owner's group on that file

* Characters 8-10: privileges of "everybody else" on that file

Type of file can be:

* -:afile

* d:adirectory

* |: a symbolic link

* b: ablock special file or block device (e.g. /dev/hda, a hard disk)

* c: character special file (e.g. /dev/tty, the terminal of the current process)

* p:apipe (atemporary file between two linked commands — see later for more examples)
* s:asocket

Type of permission can be:
* r:readable, -: it is not readable

* w: writable, -: it is not writable
* X: executable, or permission to enter a directory, -: it is not executable

<3
TUDelft
3Dgeoinfo

Linux in a nutshell
Terminal & shell(s)
File system

File system
permissions
Data streams
Processes
Scheduling jobs
Software install
Text editors

Bash shell scripting
Further resources

25

File system permissions

Using the command Is -la (or Il -a), you get all details about each file/directory in the
current directory (including the hidden files, with the -a parameter).

Character 1: type of file
(here: "d" and "-"

File Edit

Characters 2-4: file owner's

permissions

Characters 5-7: owner
group's permissions

View

Documents : bash — Konsole

Bookmarks

Plugins Settings

Owner's username

Size

Characters 5-7: others'
permissions

Help

File/directory name

Owner's group name

Timestamp

<3
TUDelft
3Dgeoinfo

Linux in a nutshell
Terminal & shell(s)
File system

File system
permissions
Data streams
Processes
Scheduling jobs
Software install
Text editors

Bash shell scripting
Further resources

26

File system permissions

The types of permissions can be also expressed numerically. In this way, all possible
combinations can be expressed with a digit between 0 and 7.

* r:read=4
* WwW:write=2

* X:execute=1

Both representations, literal and numeric,

are commonly used, especially with chmod
("change mode"), a command used to change
the permissions of a file or a directory.

Sum

a4(r) + 2(w) + 1(x)

a(r) + 2(w)
a(r) + 1(x)
4(r)
2(w) + 1(x)
2(w)

1(x)

Permission
read, write and execute
read and write
read and execute
read only
write and execute
write anly
execute only

none

Source: https://en.wikipedia.org/wiki/Chmod

https://en.wikipedia.org/wiki/Chmod

<3
TUDelft
3Dgeoinfo

Linux in a nutshell
Terminal & shell(s)
File system

File system
permissions
Data streams
Processes
Scheduling jobs
Software install
Text editors

Bash shell scripting
Further resources

27

File system permissions

The command chmod can be issued in several ways. The permissions to add, remove or
change can be expressed using either numerical or symbolic modes.

Here are some examples for using the numerical mode.

* chmod 664 file_name.txt: file_name.txt will receive read and write (6) permissions for both the owner and the
owner's group, and only read permissions for the "others"

* chmod 700 file_name.txt: file_name.txt will receive read, write and execution (7) permissions for the owner and
zero permission for the owner's group and the "others"

Please refer to the manual, or --help for more details

https://en.wikipedia.org/wiki/Chmod

<3
TUDelft
3Dgeoinfo

Linux in a nutshell
Terminal & shell(s)
File system

File system
permissions
Data streams
Processes
Scheduling jobs
Software install
Text editors

Bash shell scripting
Further resources

28

File system permissions

The command chmod can be issued in several ways. The permissions to add, remove or
change can be expressed using either numerical or symbolic modes.

The symbolic mode is composed of three components, which are combined to form a
single string of text. Specific modes can be modified, leaving the others untouched

chmod [references][operator][modes] file

Reference Class Description Operator Description
u user file owner + adds the specified modes to the specified classes
g group members of the file's group = removes the specified modes from the specified classes
® others | users who are neither the file's owner nor members of the file's group | | _ the modes specified are to be made the exact modes for the specified classes
a all all three of the above, same as ugo
Source: https://en.wikipedia.org/wiki/Chmod
(empty) default same as "all”, except that bits in the umask will be unchanged

Examples:
* chmod u+wx filename: add write and execute privileges to filename for the owner
* chmod a-w filename: remove write privigege from filename for everybody

* chmod ug=rwx filename: set the privileges of filename to be read, write and execute only for the owner and the
owner's group.

https://en.wikipedia.org/wiki/Chmod
https://en.wikipedia.org/wiki/Chmod

<3
TUDelft
3Dgeoinfo

File system permissions

Of course, you can also change the permissions of files and directories using the GUI

. —ﬂ 4TUD [Running] - O ! - [m} < ‘
Linux in a nutshell ,
" =] Advanced Permissions — Dolphin ~ A~ X
H i Documents — Dolphin ? v A X
Termlnal & She"(s) Access Permissions
FI t < g% 25 93 > Documents split Q =
I e S S em Class Special
F'I y t e user (¥ Sie [w] e [~ Enter Set UID
I e sys em G:l Home . . = Entries — Entries
ermissions [;l Desktop d d 5 Group [v] é:i’ri“;s v ‘g‘r(l:iees (] Enter Set GID
new_directory new_directory.
p A Others [+ 2:::;5 ‘g‘r[l::ﬂ [+ Enter Sticky
Data StreamS E Mieic = - Properties for 2 Selected Items — Dolphin v A X
Processes Ea] ictures et i o B o S| S Carce!
1 1 B videos @ Open with Kate Access Permissions
Scheduling jobs] Tesh [open with.
Soﬂware insta" Remoie ’ Z=ct Sz Owner: | Can View/Read & Modify/Write ~
bc Ctri+C
i @ Netork v - N Group: | Can View/Read & Modify/Write v
Text editors ;
El Paste Clipboard Contents... Ctrl+v Others: | Can Only View/Read Content v
i i =Y
BaSh She" SC”pt'ng b h d f | fl D Duplicate Here Ctrl+D Only owner can rename and delete folder content
Fur‘ther resources In Ku unt_UI t Ie h'e aulttile 2 Rerames 2 Advanced Permissions
manager Is Do phin. T Move to Trash Del
e..d(0 2 Activities S .
Here, for example, a file and +2 Share User: giorgio In the GUI W|.nd'ows, you can
a directory are selected. You [Compress Growp: |giorgie set the permissions, as if you
can I’ight—dick on them and B Properties Alt+Return Apply changes to all subfolders and their contents were using the chmod

29

select "Properties".

&

¥ OK || @ Cancel

command.

E R I.O: 3 !
BouEs B#Ee 8w cam

3
TUDelit |ndex
3Dgeoinfo

Linux in a nutshell

The terminal and the shell(s)

File system

File system permissions

Data streams

Processes

Scheduling jobs

Installation of software applications

Text editors

Bash shell scripting

Further resources

30

<3
TUDelft
3Dgeoinfo

Linux in a nutshell
Terminal & shell(s)
File system

File system
permissions

Data streams
Processes
Scheduling jobs
Software install
Text editors

Bash shell scripting
Further resources

31

Data streams

A data stream is, as the name says, a stream of data —especially text data— being
passed from one file, device, or program to another.

The GNU Utilities, the Linux core utilities, and many other command-line tools exchange
data and perform their work based on data streams.

In Linux and other Unix-like OSes, the use of Standard Input/Output (STDIO) is a
fundamental way to exchange data between programs: Programs implementing STDIO
use standardised file handles for input and output instead of files stored on a disk (or
elsewhere).

STDIO is a buffered data stream, and its function is to stream data from the output of
one program/file/device to the input of another program/file/device.

<3
TUDelft
3Dgeoinfo

Linux in a nutshell
Terminal & shell(s)
File system

File system
permissions

Data streams
Processes
Scheduling jobs
Software install
Text editors

Bash shell scripting
Further resources

32

Data streams

There are 3 STDIO data streams:

* STDIN (File handle 0) is the standard input which is usually input from the keyboard.
STDIN can be redirected from any file, including device files, instead of the keyboard.

* STDOUT (File handle 1) is the standard output which sends the data stream to the
display by default. It is common to redirect STDOUT to a file or to pipe it to another
program for further processing.

* STDERR (File handle 2) is the standard error data stream, i.e. where the program
sends error and diagnostics messages. STDERR is also usually sent to the display. If
STDOUT is redirected to a file, STDERR continues to be displayed on the screen.
STDERR can also be redirected to the same or passed on to the next transformer
program in a pipeline.

<3
TUDelft
3Dgeoinfo

Linux in a nutshell
Terminal & shell(s)
File system

File system
permissions

Data streams
Processes
Scheduling jobs
Software install
Text editors

Bash shell scripting
Further resources

33

Data streams: Redirection

Linux includes redirection commands for each stream. These can be used to write
STDIN, STDOUT and STDERR to a file. If you write to a file that does not exist, a new file
with that name will be created prior to writing.

Commands with a single bracket overwrite the destination’s existing contents.
> : send to standard output

< :read from standard input

2> : send to standard error

Commands with a double bracket append (do not overwrite) the destination’s existing
contents:

>> append to standard output

<< read from standard input, line by line

2>> append to standard error

<3
TUDelft
3Dgeoinfo

Linux in a nutshell
Terminal & shell(s)
File system

File system
permissions

Data streams
Processes
Scheduling jobs
Software install
Text editors

Bash shell scripting
Further resources

34

Data streams: Redirection

Examples:

Is /home/giorgio/home/Documents > giorgio_documents.txt : List all files/directories in the given directory and write
the results to a file

mkdir "' 2> error.txt : creating a directory with an empty name is not permitted. The error message will be written to
file error.txt

echo Write this message to a new file > file.txt

echo Append this line to an existing file >> file.txt : Example to highlight the difference between overwriting and
appending when using > and >> redirectors

Assuming we have a script called "script.sh":

script.sh < input_file : run the script and read from input_file

script.sh > output_file : run the script and write to output_file

script.sh < input_file > output_file : run the script, read from input_file and write to output_file
script.sh 2> error_file : run the script and write the STDERR to error_file

script.sh > all_output_file 2>&1 : run the script and write both STDOUT and STDERR to all_output_file. Please note: In
Bash, the last command can be also written as script.sh >& all_output_file or script.sh &> all_output_file

script.sh > /dev/null : Discard the STDOUT, i.e. redirect it to the special device /dev/null
script.sh 2> /dev/null : Discard the STDERR, i.e. redirect it to the special device /dev/null

<3
TUDelft
3Dgeoinfo

Linux in a nutshell
Terminal & shell(s)
File system

File system
permissions

Data streams
Processes
Scheduling jobs
Software install
Text editors

Bash shell scripting
Further resources

35

Data streams: Pipes

Pipes are a particular type of stream redirection. They are used to redirect a stream
from one program directly to another. When a program’s STIOUT is sent to another
through a pipe, the first program’s output will be used as STIN to the second, rather than
being printed to the terminal. Only the data returned by the second program will be
displayed.

In Linux, and other Unix-like OSes, the pipe is represented by a vertical bar "|"

The general syntax is:

command_1 | command_2 | command_3 | | command_N

Pipes are unidirectional i.e., data flows from left to right through the pipeline.

More details: https://en.wikipedia.org/wiki/Pipeline (Unix)

https://en.wikipedia.org/wiki/Pipeline_(Unix)

<3
TUDelft
3Dgeoinfo

Linux in a nutshell
Terminal & shell(s)
File system

File system
permissions

Data streams
Processes
Scheduling jobs
Software install
Text editors

Bash shell scripting
Further resources

36

Data streams: Filters

Filters are a class of programs that take plain text as standard input, transforms it into a
meaningful format, and then returns it as standard output. They are commonly used
with output piped from another program.

cut: extract sections from each line of input, usually from a file

find: returns files with filenames that match the argument passed to find

grep: returns text that matches the string pattern passed to grep

sort: prints the lines of its input in sorted order

tee: redirects standard input to both standard output and one or more files

tr: finds-and-replaces one string with another

unig: outputs the text with adjacent identical lines collapsed to one, unique line of text
wc ("word count"): counts characters, lines, and words

More details: https://en.wikipedia.org/wiki/Filter (software)

https://en.wikipedia.org/wiki/Filter_(software)

<3
TUDelft
3Dgeoinfo

Linux in a nutshell
Terminal & shell(s)
File system

File system
permissions

Data streams
Processes
Scheduling jobs
Software install
Text editors

Bash shell scripting
Further resources

37

Data streams: Filters

Examples:

Is | grep imagel.jpg : List all files and directories, pass them to grep to search for imagel.jpg
Is -l sort : List all files and directories and return them sorted
cat long_text.txt | head -15 | tail -5 : selects the first 15 lines, from which the last 5 lines will be eventually displayed

cat energy_result.csv | grep "PV production" | tee ned.txt : reads the content of the energy_result file, send it to grep
to search for the "PV production" values and finally, with tee, display them in the terminal AND save them to file
ned.txt

<3
TUDelft
3Dgeoinfo

Linux in a nutshell
Terminal & shell(s)
File system

File system
permissions

Data streams
Processes
Scheduling jobs
Software install
Text editors

Bash shell scripting
Further resources

38

Chaining operators

The data stream operators are part of a larger family: the chaining operators. They are
used chain multiple commands together. They are:

| (pipe) : The output of the first command acts as input to the second command (see previous slides)
>,>>, < (redirection) : Redirects the output of a command (see previous slides)

\ (concatenation) : Allows to concatenate long commands spanning over several lines in the shell

() (precedence) : Allows to define the precedence order to execute commands

& (ampersand) : Run a process/script/command in the background

&& (logical "and") : The command following && is only executed if the command preceding && has been successfully
executed

| | (logical "or") : The command succeeding | | is only executed if the command preceding | | has failed.
&&-| | (and-or) : Combination of the && and | | operators, similar to the if-then-else statement.

! (not) : Negates an expression within a command

; (semi-colon) : The command following ; is executed even if the command preceding ; has failed

{} (combination) : The execution of the command list inside {} depends on the execution of the first command in the
list

<3
TUDelft
3Dgeoinfo

Linux in a nutshell
Terminal & shell(s)
File system

File system
permissions

Data streams
Processes
Scheduling jobs
Software install
Text editors

Bash shell scripting
Further resources

39

Chaining operators

Examples:

ping -c20 3d.bk.tudelft.nl & : Ping the webpage for 20 times, run the process in the background (test it also without &
to see the difference: can you interact with the terminal?)

who ; pwd ; Is : Simply run the 3 commands one after the other, no matter if one fails or succeeds

echo "Print this!" && echo -e "\nThe first echo command succeeded" : The second echo is run only if the first one
succeeds

mkdir "" | | echo -e "\nThe first command failed" : the echo is run only because the first command fails (you cannot
create a nameless directory)

ping -c1 3d.bk.tudelft.nl && echo “Successful ping” | | echo “Failed ping" : ping the URL, if there is an answer then
execute the first echo, else execute the second echo

rm !(*.jpg) : remove (delete) all files that do not have a .jpg extension

ping -c1 www.brickset.com && { echo -e "\n\n*** The webpage exists!" ; firefox www.brickset.com & } : Ping the
webpage. Then consider the list of commands inside {}. Run the second in the list only if the first (echo) succeeds.
Beware the syntax: please note the empty spaces after the { and before the } parentheses

3
TUDelit |ndex
3Dgeoinfo

Linux in a nutshell

The terminal and the shell(s)

File system

File system permissions

Data streams

Processes

Scheduling jobs

Installation of software applications

Text editors

Bash shell scripting

Further resources

40

<3
TUDelft
3Dgeoinfo

Linux in a nutshell
Terminal & shell(s)
File system

File system
permissions

Data streams
Processes
Scheduling jobs
Software install
Text editors

Bash shell scripting
Further resources

41

Processes

A running instance of a program is called a process

* Example: If you have opened two terminal windows, most likely you have two processes of the
same program (e.g. "Konsole"). Each terminal loads a shell program (e.g. the Bash shell): each
running shell is itself another process. Whenever you issue a command from the shell (e.g. "cp"),
the corresponding program is executed in a new process, too.

Processes in Linux are organized as a tree.

* The init process is the root process

* Each process as its own ID (PID, process ID)

* Each process has the ID of the parent process (PPID, parent process ID)

Multiple processes, running in parallel or in series, can be grouped in jobs. Ajob is a
scheduled process or set of processes.

<3
TUDelft
3Dgeoinfo

Linux in a nutshell
Terminal & shell(s)
File system

File system
permissions

Data streams
Processes
Scheduling jobs
Software install
Text editors

Bash shell scripting
Further resources

42

Processes

In Linux, there are 5 types of processes.

Parent process: The process created by the user on the terminal. All processes have a
parent process. If it was created directly by the user, then the parent process will be
the kernel process

Child process: A child process is a process that is created by another process known as
the parent process

Orphan process: A child process becomes an orphan process when the parent gets
executed before its own child process. In such a case, the orphan process has a “Init”
process (PID 0) as its PPID

Zombie process: A process that is already dead but shows up in process status.
Zombie processes have zero CPU consumption

Daemon process: A system-related background processes. These processes often run
the permissions of root and service requests from other processes. A Daemon process
often runs in the background. A Daemon process can be recognized if it has “?” in its
TTY field (see later)

<3
TUDelft
3Dgeoinfo

Linux in a nutshell
Terminal & shell(s)
File system

File system
permissions

Data streams
Processes
Scheduling jobs
Software install
Text editors

Bash shell scripting
Further resources

43

Processes

Linux processes can be run in foreground or in background

* Foreground processes are started by the user and are the default. They accept
command-line input and output it to the computer screen. A running foreground
process prevents the start or execution of other, following processes because the
command prompt will not be available until the currently running program completes
its processing and comes out.

* Background processes run, as the name says, in the background. They are non-
interactive and do not need keyboard input. While one process is running in the
background, it is possible to start another process from the terminal.

By adding a single ampersand ("&") at the end of a command, the command can be
executed as a background process

Example:

— sleep 5 && echo "Ciao!": Force the terminal to wait for 5 seconds, then print the message to the screen.
Nothing can be done in-between in the terminal.

— sleep 10 && echo "Ciao!" &: Note the last, single &! After issuing the command, you can still interact with the
terminal. After 5 seconds, the message will be printed to the screen.

<3
TUDelft
3Dgeoinfo

Linux in a nutshell
Terminal & shell(s)
File system

File system
permissions

Data streams
Processes
Scheduling jobs
Software install
Text editors

Bash shell scripting
Further resources

44

Processes

Useful BASH commands for processes

ps ("process status"): list processes, with different levels of information, e.g. ps -fu
ps <pid>: check status of a single process, identified by its PID

pstree: print the tree of the processes

kill <pid>: end/terminate a process, identified by its PID

top: display Linux processes

htop: an interactive system control, process viewer, and process manager

jobs: display status of jobs

Miscellaneous commands:
free: display the total amount of free and used memory (RAM) on the Linux system
df: display the free disk space(Hard Disk) on all the file systems

<3
TUDelft
3Dgeoinfo

Linux in a nutshell
Terminal & shell(s)
File system

File system
permissions

Data streams
Processes
Scheduling jobs
Software install
Text editors

Bash shell scripting
Further resources

45

Processes

This is the output of command

> | ~: bash — Konsole % ps -fu

File Edit View Bookmarks Plugins Settings Help

giorgi ubuntu-22:~% ps -fu

USER PID PU %MEM V52
gilorgio 9817 6.8 8.1 11284
gliorgio 9877 @.8 8.8 12676

RSS TTY
5504 pts/1 Ss
3328 pts/1 R+

STAT START
16:20
16:24

USER: Process owner

PID: The process ID

%CPU, %MEM: Percentage of CPU/memory used

VZS: Virtual memory size, virtual memory used by the process (in kB)
RSS: Resident set size, physical memory used by the process (in kB)
TTY: The terminal associated with the process

TIME COMMAND

0:880 fsbin/sbash

STAT: The state code of the process; there are many values, but the common ones are S (sleeping) and R (running)

START: The time when the process started
TIME: The CPU time consumed by the process
COMMAND: Command issued that created the process

More details: https://it.wikipedia.org/wiki/Ps (Unix)

https://it.wikipedia.org/wiki/Ps_(Unix)

5
TU Delft P rocesses htop is interactive system control,

3Dgeoinfo process viewer, and process manager

ad ~: htop — Konsole

File Edit View Bookmarks Plugins Settings

Linux in a nutshell

Terminal & shell(s)

File system

File system giorgio

permissions storate
Data streams Siorais
Processes diorgic

glorgio

Scheduling jobs gior
Software install 254 root

root

Text editors 232 systend-r

root

Bash shell Scripting 466 root

467 root
Further resources A
root
472 messagebu
473 root
484 root
491 root
494 root
496 root
497 root 6784
498 syslog 4480
581 root (4] 7424 .8 @

F1F2F3MF4F5EE!F6F?F8F9 il ghouit

RES SHR
113M 77328

:
-

TIME+ Command

Jusr/lib/xorg/Xorg -nolisten tcp -auth /var/run/sddm/{7e188366-4d95-455d-b
Jusr/bin/VBoxClient --vmsvga-session
Jusr/bin/kwin_x11

Jusr/bin/plasmashell

Jusr/bin/konsole -gwindowtitle Htop -gwindowicon htop -e Jfusr/bin/htop
Jusr/bin/htop

/sbin/init splash

/lib/systemd/systemd-journald

/lib/systemd/systemd-udevd

/lib/systemd/systemd-resolved

Jusr/sbin/haveged --Foreground --verbose=1
Jusr/libexec/accounts-daemon

fusr/sbinsacpid

avahi-daemon: running [Kubuntu-22.locall]

Jusr/sbin/cron -f -P

@dbus-daemon --system --address=systemd: --nofork --nopidfile --systemd-ac
Jusr/sbin/NetworkManager --no-daemon

Jusr/sbin/irgbalance --foreground

Jusr/bin/python3 fusr/bin/networkd-dispatcher --run-startup-triggers
fusrflibexecfpolkitd ——no—debug

Jusr/libexec/power- proflles -daemon

fusrfsblnfrsyslogd -n -iNONE

DWW oW LR

3584
8276
23948
41608
o@8s
1792
6912
1792
3712
2688
40896
15368
3584
10624
7424
3584

2D E®® @ @[

200000800000 @ 5
@@@@@@@@@@@@@@@@@@L\J(DUWMUQEN

L\JNNI—‘L\JLﬂl—‘U‘NI—‘I—‘@NI—‘UN@Wl—‘I—‘H@@@I—‘D—‘W

LI ™ ¥ ¥ ¥ ¥ T ¥ T ¥ IV T ¥ I ¥ Y W W W R ¥ I ¥}

200000000000 E@e @@
@@EEEE@@@@@@@@EEEEE@M@@N@@P‘

@@EEEE@@@@@@@@EEEEE@@@@N@@P

<3
TUDelft
3Dgeoinfo

Linux in a nutshell
Terminal & shell(s)
File system

File system
permissions

Data streams
Processes
Scheduling jobs
Software install
Text editors

Bash shell scripting
Further resources

47

P rocesses Final!y, y:)u also can use the "System

monitor" to manage the processes
directly from the Kubuntu GUI

ﬁ Kubuntu 22.04.4 TUD [Running] - Oracle VM VirtualBox / =) X
File Machine View Input Devices Help
5 Processes — System Monitor v A X
& Tools v = Processes | Q searc (& EndProcess | g5 3
@ overview Name CPU Viemory v Read Write
Eg Applications B plasmashell 230,7 MiB
E: History +? plasma-syste... 0,5% 158,7 MiB
© kdeds 137,6 MiB
Processes
kwin_x11 93,2 MiB
dd New Page... a e
SO : N sna i
{} Giorgio Agugiaro P :
pulseaudio 15,1 MiB
D Eepries m Info Center kdeconnectd 13,2 MiB
DiscoverNoti... 10,3 MiB
B8 Al Applications KDE Partition Manager rti 0 B ksmserver o5 Mig
™ Games Konsole Termina xdg-desktop-... 8,5MiB
= kglobalaccel5 8,3 MiB
Graph .- KSystemLo: ;
® craphics = Y < kwalletds 7,8 MiB
«'.‘ Internet @ KWalletManager KDE Wallet Managen 00 xdg-desktop-... 7,7 MiB
© kaccess 7,6 MiB
el Multimedia (*¢) Midnight Commander
- kactivitymana... 6,9 MiB
By office . Muon Package Manager Pack Vanager klauncher 6,9 MiB
startplasma-x... 6,8 MiB
‘A Science & Math B Startup Disk Creator P
S i plasma_session 6,4 MiB

* Settings fa System Monitor

= System UXTerm xterm wrapper for Unicode environment
o8 Utilities XTerm star i terminal emulator for the X window syst
88 Applications @ Places & sleep D Restart () shutbDown © ‘ ‘

T;r r ‘s u l‘) It TJ 02- 08 2024
L5 5@ EleEm esmy

3
TUDelit |ndex
3Dgeoinfo

Linux in a nutshell

The terminal and the shell(s)

File system

File system permissions

Data streams

Processes

Scheduling jobs

Installation of software applications

Text editors

Bash shell scripting

Further resources

48

<3
TUDelft
3Dgeoinfo

Linux in a nutshell
Terminal & shell(s)
File system

File system
permissions

Data streams
Processes
Scheduling jobs
Software install
Text editors

Bash shell scripting
Further resources

49

Scheduling jobs

A process or a group of processes (a job) can be schedule to be run at a certain pointin
time, or with a certain schedule. Relevant commands are:

at: execute commands for one time at a specified time (in future)

atqg (at queue): print the list of user's pending jobs

cron: a Daemon process. It reads every minute the crontab table and executes the scheduled jobs

crontab: show and manage the table containing the list of scheduled jobs. In particular

o crontab -l: list all jobs in the crontab table

o crontab -e: open the editor to add, remove, change the scheduled jobs in the crontab table

o crontab -r: remove the complete list of scheduled jobs

Please note: For at and cron there are several command options and some ancillary
commands. Please refer to the documentation for further details. The next slides will
provide only some simple examples

at: https://en.wikipedia.org/wiki/At (Unix)
cron: https://en.wikipedia.org/wiki/Cron

https://en.wikipedia.org/wiki/At_(Unix)
https://en.wikipedia.org/wiki/Cron

<]
TUDelft
3Dgeoinfo

Linux in a nutshell
Terminal & shell(s)
File system

File system
permissions

Data streams
Processes
Scheduling jobs
Software install
Text editors

Bash shell scripting
Further resources

50

Scheduling jobs: at

The command at can be run in different ways: Example 1

ol ~: bash — Konsole W

File Edit View Boockmarks Plugins Settings Help

(ubuntu-22:~% echo "Midi-chlorians... what??" > sw_biology.txt | at now + 2 minutes
warning: commands will be executed using /bin/sh
job 19 at Fri Aug 2 18:12:00 2024
giorgio@gKubuntu-22:~% atq

19 Fri Aug 18:12:00 2024 a giorgio
(ubuntu-22:~% cat sw_biology.txt
ians... what??

(ubuntu-22:~% [

Using piping, you echo a message that will be written to a text file. This operation is to be carried out in 2 minutes from now. A job
is therefore created.

You can check the pending job with atq.

After 2 minutes, you can check that the file has been written and contains the original message.

<3
TUDelft
3Dgeoinfo

Linux in a nutshell
Terminal & shell(s)
File system

File system
permissions

Data streams
Processes
Scheduling jobs
Software install
Text editors

Bash shell scripting
Further resources

51

Scheduling jobs: at

The command at can be run in different ways: Example 2

ol ~: bash — Konsole e

File Edit View Bookmarks Plugins Settings Help

buntu-22:~% at now + 2 minutes
warning: commands will be executed using /bin/sh
at Fri Aug 2 18:28:00 2024
at> echo "Midi-chlorians... what??" > sw_biologyZ2.txt
at> <EOT=
i at Fri Aug 2 18:28:00 2824

buntu-22:~% atq
18:28:00 2024 a giorgio
buntu-22:~% cat sw_biology2.txt
. what??
giorgiogKubuntu-22:~% I

Here you perform the same operation as before, however using at's interactive prompt that allows you to enter which commands
to run at the specified time. A warning stating which shell the command will use is also printed.

You can exit the interactive prompt and save the scheduled job by pressing Ctrl + D. You can cancel the job with Ctrl + C.

<3
TUDelft
3Dgeoinfo

Linux in a nutshell
Terminal & shell(s)
File system

File system
permissions

Data streams
Processes
Scheduling jobs
Software install
Text editors

Bash shell scripting
Further resources

52

Scheduling jobs: cron

Scheduling jobs for cron is consists in adding lines to the crontan table. Assume that you
have a shell script named "script.sh" that you want to run at regular intervals. The
generic syntax to add a job entry to crontab is

ABCDE COMMAND

with:

A: Minutes range from 0 to 59; default is * (i.e. all values)

B: Hours range from 0 to 23; default is * (i.e. all values)

C: Days range from 0 to 31; defaultis * (i.e. all values)

D: Months range from 0 to 12; default is * (i.e. all values)

E: Days of the week range from 0 to 7 (Sunday is 0 or 7); default is * (i.e. all values)
COMMAND: command to be executed.

Example:
Line to add to run the script every day of the year exactly at 18:00 (6:00 PM)
018 * * * /home/giorgio/script.sh

fupeit Scheduling jobs: cron

3Dgeoinfo

Run crontab -e to edit the crontab table and add a line for each job at the end of the file.
Save and exit. Suggestion: always use ABSOLUTE PATHS to your script.

Linux in a nutshell a ~: crontab — Konsole v A X
Terminal & shell(s) File | Edit View Bookmarks Plugins Settings Help

File system

File system
permissions

Data streams
Processes
Scheduling jobs
Software install
Text editors

Bash shell scripting
Further resources

GNU nano 6.2 /tmp/crontab.TpiATe/crontab *

®@ 18 * * * shome/giergio/script.sh]]

We Help W Write Out Wl Where Is W Cut Ml Execute ¥ Location
53 B Exit M Read File B Replace Bl Paste B Justify M Go To Line

<3
TUDelft
3Dgeoinfo

Linux in a nutshell
Terminal & shell(s)
File system

File system
permissions

Data streams
Processes
Scheduling jobs
Software install
Text editors

Bash shell scripting
Further resources

54

Scheduling jobs: cron

Run crontab -l to print to screen the crontab table. Here you can see that the job has

been added and will be carried out at the set time.

> | ~ : bash — Konsole

File Edit

P

9
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
9]

View Bookmarks Plugins

buntu-22:~% crontab -1
is file to introduce tasks to be run by cron.

Settings Help

m o
a =
=i

Each task to run has to be defined through a single line
indicating with different fields when the task will be run
and what command to run for the task

To define the time you can provide concrete values for
minute (m), hour (h), day of month (dom), month (mon]),
and day of week (dow) or use '*' in these fields (for 'any').

Motice that tasks will be started based on the cron’'s system
daemon's notion of time and timezones.

Output of the crontab jobs (including errors) is sent through
emaill to the user the crontab file belongs to (unless redirected).

For example, you can run a backup of all your user accounts
at 5 a.m every week with:
@5 ** 1 tar -zcf fvar/backups/home.tgz /home/

For more information see the manual pages of crontab(5) and cron(8)

command
‘glorgio/script.sh

2
TUDelit |ndex
3Dgeoinfo

Linux in a nutshell

The terminal and the shell(s)

File system

File system permissions

Data streams

Processes

Scheduling jobs

Installation of software applications

Text editors

Bash shell scripting

Further resources

55

<3
TUDelft
3Dgeoinfo

Linux in a nutshell
Terminal & shell(s)
File system

File system
permissions

Data streams
Processes
Scheduling jobs
Software install
Text editors

Bash shell scripting
Further resources

56

Installation of software applications

* In Linux there are several ways to install a software application

* The easiest, and by far the most common way, is to install software applications from
a repository. A repository is a public server that hosts software packages

* A software package (or just: package) is a collection of files and metadata that
contains a specific software application. The purpose is to simplify the process of
distributing, installing, and managing software on a computer system

* There are different types of software package formats, depending on the distribution.
The two most common ones are rpm and deb. The rom format is tailored to Red Hat
Linux and its derivatives, while the deb format is for Debian-based distributions, such
as (K)Ubuntu

* A Linux distribution provides a command, and usually a GUI-based program, that
retrieves the software from a repository and installs it onto your computer

— It is conceptually the same as searching for and installing an app on your smartphone from the
Android or Apple stores!

<3
TUDelft
3Dgeoinfo

Linux in a nutshell
Terminal & shell(s)
File system

File system
permissions

Data streams
Processes
Scheduling jobs
Software install
Text editors

Bash shell scripting
Further resources

57

Installation from a repository

The installation from a repository can be carried out, as usual, in two ways:
a) Using the terminal
b) Using a GUI based software installation program

When using the terminal, you only need to know the exact name of the package
containing the program you want to install

Before installing the software itself, it is a good habit to refresh the database(s) on
your machine that contains the list of applications available in the repositories

All these operations require superuser privileges, but can be carried out also by a

normal user thanks to sudo

— In (K)Ubuntu, you use the apt command to perform software installation and other related
operations

Alternatively, you can use the GUI-based package manager to search for the package

name, and to install or remove it without using the terminal at all

— In Kubuntu, the GUI-based package manager is called Discover

— In Ubuntu, the GUI-based package manager is called Ubuntu Software Center

<3
TUDelft
3Dgeoinfo

Linux in a nutshell
Terminal & shell(s)
File system

File system
permissions

Data streams
Processes
Scheduling jobs
Software install
Text editors

Bash shell scripting
Further resources

58

Installation from a repository

Example 1:

Let's assume we want to install the file manager Midnight Commander. Its package
name is mc. Let's open a terminal and type (you will be asked your password):

sudo apt update
sudo apt install mc

That's all! The first line updates the database(s) containing information on the
software in the repositories. The second line downloads and installs Midnight
Commander. At the end, you can type mc, and the program will be launched. Using
command chaining, the above commands can be also written as

sudo apt update && sudo apt install mc

Finally, if you want to remove/uninstall a software package (e.g. mc), you simply type:

sudo apt remove mc

g
TUDelft
3Dgeoinfo

Linux in a nutshell
Terminal & shell(s)
File system

File system
permissions

Data streams
Processes
Scheduling jobs
Software install
Text editors

Bash shell scripting
Further resources

59

Installation from a repository

Example 2:

Let's assume we want to install Visual Studio Code. But you do not know the exact
package name. Let's use Discover in Kubuntu.

2) In the search field, write
"Visual Studio Code"

{:} Giorgio Agugiaro

a8 Search: Visual Studio Code — Discover v oA X

I studio Cod a Vi ; .
() | Visual Studio Code Search: Visual Studio Code 3) The results will appear
ﬂ Applications >

Gwyddion here. Pick the one you are

SPM data visualization and analysis} looki ng for
*hkkk 8rating

=+ Application Addons

«.? Plasma Addons

code Nisnap
Code editing. Redefined.

Kk khk 2762 ratir

[] Favorites %9 Discover

Install

B8 Al Applicatio= = Dolphin

1] Htop

code-insiders N snap
Code editing. Redefined.

1. 8.8 8 8 ¢

Joplin
J A free, private nof]
Kk h ko 93rat

1) Launch Discover.

W Info Center

a .
& Internet) KDE Partition Manager

4) Click on the "Install" button and
wait till the application is installed.
You will be requested your password.

Done!

=& Multimedia Konsole

By office Z KSystemLog

A Science & Math & kwalletManager

=" Settings *¢) Midnight Commander

= System M Muon Package Manager

78 Utilities B startup Disk Creator

@ Places

M)

EE Applications

& sleep D Restart (V) shutbown © ‘

B0 it &4 031083:-22224]

<3
TUDelft
3Dgeoinfo

Linux in a nutshell
Terminal & shell(s)
File system

File system
permissions

Data streams
Processes
Scheduling jobs
Software install
Text editors

Bash shell scripting
Further resources

60

Installation from a repository

Example 2:
Launch Visual Studio Code

[| ~ : bash — Konsole <) python_script.py - scripts - Visual Studio Code

File Edit View Bookmarks Plugins File Edit Selection View Go Run Terminal Help

giorgio@Kubuntu-22:~$ code & [] -
XPLORER @ python_script.py X

1 print("\

{:} Giorgio Agugiaro

D Favorites } Visual Studio Code

m All Applications

5b) ...or by typing

@ Development

™ Games

code

5a) You can now run Visual Studio in the terminal window. Please note
Code either by selecting it from the the (optional) & afterwards!
application menu...

‘A science & Math

<~ Settings Hello World!
> OUTLINE

> TIMELINE giorgio@Kubuntu-22
TASK EXPLORER

= System

82 Applications @ Places @& sleep ¢ Restart (") shutDown (@

BB +9 | B O it &4 0310%-2824 [

s . .
JTUDeIft Installation from a repository

3Dgeoinfo

Example 2:

Uninstall Visual Studio Code
Linux in a nutshell
Terminal & shell(s)

File system
File System a8 Search: Visual Studio Code — Discover
permissions () | Visual Studio Code a Search: Visual Studio Code
Data Streams / ‘ SGPvN\l’i.ad:\ili(:;Iiza(ion and analysis
Processes 7 alolobobo it S
Scheduling jobs , =
. code N snap
Software install If you want to uninstall Visual Studio a Code editing. Redefined.
Text editors Code (or any other program), open AR —
L. Discover, search for the package,
BaSh She" SCI’IptIng and... code-insiders
Code editing. Redefined.
Further resources &' f«ﬁfg tng ...click on the "Remove" button. Your

password may be requested.

85 Installed

Z Joplin
o~ Settings J A free, private note taking and to-do app!
* Ak kk 93rating
Application:

@ About

@ Up to date

61

3
TUDelit |ndex
3Dgeoinfo

Linux in a nutshell

The terminal and the shell(s)

File system

File system permissions

Data streams

Processes

Scheduling jobs

Installation of software applications

Text editors

Bash shell scripting

Further resources

62

,; .
TUDelft Text editors

3Dgeoinfo
* A fundamental application that can't miss in a Linux machine is a text editor. As a matter of
fact, there are several text editors for Linux. Some are based on the command-line, others
Linux in 2 nutshell exploit the GUI possibilities of the Desktop Environment they are part of
lﬁgg:tle?‘nsmn(s) * |In terms of command-line text editors, the two most well-known %
File system are vim and nano
permissions l |
Bata streams » Kate is the text editor shipped with KDE (e.g. in Kubuntu), while é
rOCESSEs gedit is the "equivalent" that comes with GNOME (e.g. in Ubuntu). |

Scheduling jobs
Software install

Texteditors But there are many more, even several extensions for Visual
Bash shell scripting %

i h ' for the Bash shell!
Further reSoUrces Studio Code that provide support for the Bash she

Further details: https://en.wikipedia.org/wiki/Category:Unix text editors

63

https://en.wikipedia.org/wiki/Category:Unix_text_editors

fupeiit Text editors: Nano 11

3Dgeoinfo

In the realm of command-line text editors, nano (more precisely: GNU nano) is less
powerful than vim, but much easier to learn and use. It can be started simply typing

Linux in a nutshell nano or nano <file_name>. It provides a two-line shortcut bar at the bottom of the

Terminal & shell(s) screen which lists the available commands.

File system

File system

permissions Some of these commands are:

Data streams ud ~: nano — Konsole v AW

Processes File Edit View Bookmarks Plugins Settings Help

. . GNU nano 6.2 New Buffer *
SChedU“ng JObS I am writing a file using nano!! Wow!
Software install CTRL-R: Instert contents from another

Do not miss out about the text-editor wars!

Text editors file to the current bufer recple have been arguing for years on which
Bash shell scripting CTRL-G: Display the help screen
Further resources cyr-0: write to a file
CTRL-X: Exit a file
CTRL-C: Show cursor position

There is even a Wikipedia entry about it...

Bt Write OQut @ Where Is By Cut Ml Execute
Bi Read File g} Replace Bl Paste B Justify

64

fupeiit Text editors: Kate

3Dgeoinfo

[

@ Untitled * — Kate

Linux in a nutshell File Edit View Projects LSPClient Bookmarks Sessions Tools Settings Help
Terminal & shell(s) <>mns= , Uniited
File system

File system
permissions

Data streams
Processes
Scheduling jobs
Software install
Text editors

Bash shell scripting
Further resources

—
=

(a1 > Home This is an example of a text file written using KATE,

Name ~ Size Date | the KDE text editor that comes, for example, with Kubuntu.
[0 Desktop 1item 31-07-2024 22:05

>~ [Documents 4items 01-08-2024 19:37

L. Downloads Oitems 31-07-2024 22:05
Music Oitems 31-07-2024 22:05
Pictures Oitems 31-07-2024 22:05 ‘

& Public 0items 31-07-2024 22:05
snap 1item 31-07-2024 22:19
Templates 0items 31-07-2024 22:05
Videos 0items 31-07-2024 22:05 ‘
giorgio_d...ments.txt 58 B 02-08-2024 21:29
nano.11092.save 216 B 02-08-2024 22:56 Line 6, Column 29 INSERT en_US Soft Tabs: 4 UTF-8 Normal

_ script.sh 256 B 02-08-2024 19:22 |GRRSISRRICEAT TR STETFERN 1

6 It comes with a wealth of functionalities...

auIINQ |oquiAs JualD ST

v

8
c
o
=
=
5]
<)
o
3
Y
o]
@
g
o
=]
(G}
=
]
®
8
@
=
8
b8
I
g
'™
[a

@ Output Q Search and Replace B Current Project Terminal Panel [E LSP Client

: 22:58
B0 it &~ 550
65 PEERET EeE=T

P
TUDelft
3Dgeoinfo

Linux in a nutshell
Terminal & shell(s)
File system

File system
permissions

Data streams
Processes
Scheduling jobs
Software install
Text editors

Bash shell scripting
Further resources

Text editors: Visual Studio Code

) script.sh - scripts - Visual Studio Code

File Edit Selection View Go Run Terminal Help

EXPLORER $ scriptsh X

~ SCRIPTS $ script.sh > [2] greeting

GELA
$ script.sh #

greeting="Hello World!"

clear
echo -e

QUTPUT TERMINAL

*hkEH

Hello Woxld!

*h &K

giorgio@Gio-Kubuntu:

» OUTLINE
» TIMELINE

@OAD WD S Ln 3, Col 11

"\n****\nggreeting\n****\n"

goash + [0 @ -

Spaces: 4

UTF-8 LF

Shell Script

Q

3
TUDelit |ndex
3Dgeoinfo

Linux in a nutshell

The terminal and the shell(s)

File system

File system permissions

Data streams

Processes

Scheduling jobs

Installation of software applications

Text editors

Bash shell scripting

Further resources

67

<3
TUDelft
3Dgeoinfo

Linux in a nutshell
Terminal & shell(s)
File system

File system
permissions

Data streams
Processes
Scheduling jobs
Software install
Text editors

Bash shell
scripting
Further resources

68

Shell scripting

* Shell scripting consists in turning a series of commands into a script that can be run as
many times as needed Shell scripting is primarily meant to automate repetitive tasks,
test solutions, and increase efficiency

* Examples of tasks that benefit from shell scripting can be performing backups of files,
monitoring system resources, and managing user accounts

* Ashell script is in essence a text file with a list of commands that instruct an operating
system to perform certain operations

* A shell script must be read and interpreted by a shell program
* A shell script file has generally a .sh extension

* A shell script can be run in two ways:

— As argument of the shell binary/executable file (e.g. /bin/bash)
* Example: /bin/bash ./my_script.sh

— As an executable file, which however must be made executable with chmod u+x my_script.sh
* Example: ./my_script.sh

<3
TUDelft
3Dgeoinfo

Linux in a nutshell
Terminal & shell(s)
File system

File system
permissions

Data streams
Processes
Scheduling jobs
Software install
Text editors

Bash shell
scripting
Further resources

69

Bash shell scripting (gBASH

* Shell script files must begin with the so-called shebang. The first line of the script
contains the absolute path to the shell interpreter. This is relevant especially when
there exist different shells in the same machine

* The shebang is written as #!/bin/bash (for the Bash shell)

* The name comes from the combination of the terms sharp (#) and bang (!). Besides
shebang, it is also known as sha-bang, hashbang, etc.

1

echo "May the Bash be with you!

Example of a simple shell script the just prints a
message to the screen. The first line is the shebang

More details: https://en.wikipedia.org/wiki/Shebang (Unix)

https://en.wikipedia.org/wiki/Shebang_(Unix)

<3
TUDelft
3Dgeoinfo

Linux in a nutshell
Terminal & shell(s)
File system

File system
permissions

Data streams
Processes
Scheduling jobs
Software install
Text editors

Bash shell
scripting
Further resources

70

Bash shell scripting (gBASH

Please note: Proving a full guide to shell scripting is beyond the purpose of this
introdutory guide. Only the basics will be mentioned here. A good starting point is the
open-source book "Introduction to Bash scripting" by Bobby lliev, available also on
GitHub at https://github.com/bobbyiliev/introduction-to-bash-scripting.

Comments:

Comments must be preceded by the # symbol. Example:
This is a comments

Variables:

Variables are generally declared using the = symbol and no spaces before and after it.
Variables are accessed using the $ symbol, or (better) using also curly brackets {}
Example: set_a_var.sh

#!/bin/bash

my_var="Ciao!"

my_list="Luke Leia Anakin Obi-Wan"
echo "The value of my_var is: ${my_var}"
echo "The value of my_list is: S{my_list}"

giorgio@Kubuntu-22:~/scripts$./set_vars.sh
The value of my_var is: Ciao!

The value of my_Llist is: Luke Leia Anakin Obi-Wan

scripts$ ||

giorgio@Kubuntu-22:~

https://github.com/bobbyiliev/introduction-to-bash-scripting

<3
TUDelft
3Dgeoinfo

Linux in a nutshell
Terminal & shell(s)
File system

File system
permissions

Data streams
Processes
Scheduling jobs
Software install
Text editors

Bash shell
scripting
Further resources

71

Bash shell scripting (gBASH

Variables: "Arithmetic expansion"

Bash allows for some maths on integers. For floating-point numbers, you can pipe the
expression to bc (basic calculator).

S((expression)) : This operator called "arithmetic expansion". It is used to perform some (integer-based) maths in
Bash. (()) evaluates the expression, $ stores the result

a=2

++X, X++ Pre and post-increment
echo "$((${a}**2))" # printsa*a=4

--X, X-- Pre and post-decrement
b=2.5 +,- %/ Addition, subtraction, multiplication, division
echo "${b}*2" | bc-I" # prints b*b = 6.25 %, ** or A Modulo (remainder) and exponentiation

echo "$((${b}**2))" # will cause an error: no integer! &8, [|,! Logical AND, OR, and negation

10 &, |, N7 Bitwise AND, OR, XOR, and negation
echo "$((++i))" # will return 11 <=, <, >, Less than or equal to, less than, greater than, and
=> greater than or equal to comparison operators

==, I= Equality and inequality comparison operators

<3
TUDelft
3Dgeoinfo

Linux in a nutshell
Terminal & shell(s)
File system

File system
permissions

Data streams
Processes
Scheduling jobs
Software install
Text editors

Bash shell
scripting
Further resources

72

Bash shell scripting (gBASH

User input: User input (e.g. from the keyboard) can be assigned to a variable using read.

Example: origin.sh

#1/bin/bash giorgio@Kubuntu-22:~/scripts$./origin.sh
echo "From which country do you come from?" From which country do you come from?

q SOKOVIA
(L EN T You come fTrom SOKOVIA

echo "You come from ${country}" giorgio@Kubuntu-22:~/scripts$ |

Bash arguments: You can pass arguments to your Bash scripts. They can be accessed
from the script using $1,$2,$3, ..., $n, with n the order they are passed. $@ is a
reference to ALL passed arguments.

Example: fruit_salad.sh

#!/bin/bash

echo "First fruitis S1" giorgio@Kubuntu-22:~/scripts$./fruit_salad.sh apples kiwis bananas
First fruit is apples

echo "Second fruit is $2" o T P
Second fruit is kiwis

echo "Third fruit is $3"

Third fruit is bananas
echo "All fruits are S@" A1l fruits are apples kiwis bananas
giorgio@Kubuntu-22:~/scripts$ I

<3
TUDelft
3Dgeoinfo

Linux in a nutshell
Terminal & shell(s)
File system

File system
permissions

Data streams
Processes
Scheduling jobs
Software install
Text editors

Bash shell
scripting
Further resources

73

Bash shell scripting

(@BASH

Arrays: An array is initialised by assigning values separated by spaces and enclosed in
round parentheses (). You can access array values in different ways.

Example: arrays.sh

my_array=("X-Wing" "A-Wing" "B-Wing" "Y-Wing")

echo "All spaceships: ${my_array[@]}"

echo "Indices of items are: ${!my_array[@]}"

echo "Number of items in the array is: S{#my_array[@]}"

echo "First spaceship is: S{my_array[0]}" # O-index based!

echo "Second spaceship is: ${my_array[1]}"
echo "Last spaceship is: ${my_array[-1]}"

giorgio@Kubuntu-22:~/scripts$./arrays.sh
All spaceships: X-Wing A-Wing B-Wing Y-Wing
Indices of items are: @ 1 2 3

Mumber of items in the array is: 4

First spaceship is: X-Wing

Second spaceship i1s: A-Wing

Last spaceship is: Y-Wing

First two spaceships are: X-Wing A-Wing

scripts$ |

giorgio@Kubuntu-22:~

echo "First two spaceships are: ${my_array[@]:0:2}" # 2 is excluded

<3
TUDelft
3Dgeoinfo

Linux in a nutshell
Terminal & shell(s)
File system

File system
permissions

Data streams
Processes
Scheduling jobs
Software install
Text editors

Bash shell
scripting
Further resources

74

Bash shell scripting (gBASH

Conditional expressions: the [[compound command and the [built-in command are
used to test file attributes and perform string and arithmetic comparisons.

(Some) examples of file expressions:

[[-e S{file}]] : returns true if file exists
[[-d S{file}]] : returns true if file exists and is a directory
[[-x S{file}]] : returns true if file is executable

(Some) examples of string expressions:
[[S{stringl} == S{string2} 1] : returns true if the strings are equal
[S{string1} != S{string2}]] : returns true if the strings are different

<3
TUDelft
3Dgeoinfo

Linux in a nutshell
Terminal & shell(s)
File system

File system
permissions

Data streams
Processes
Scheduling jobs
Software install
Text editors

Bash shell
scripting
Further resources

75

Bash shell scripting

Conditional expressions (ctd)

(Some) examples of arithmetic operators:

[[S{argl}-eq S{arg2}]] : returns true if the 2 numbers are equal

[[S{argl} -ne S{arg2}]] : returns true if the 2 numbers are different

[[S{argl} -gt S{arg2} 1] : returns true if argl is greater than arg2

[[S{argl} -le S{arg2}]] : returns true if argl is less or equal than arg2

[[test_case_1]] && [[test_case_2]] : returns true if both cases are true (AND)
[[test_case_11]] || [[test_case_2]] : returns true if at least one of the cases is true (OR)

Examples of Exit status operators:

[[S?-eq 01]] : returns true if the command was successful without any errors
[[S? -gt 0]] : returns true if the command was not successful or had errors

<3
TUDelft
3Dgeoinfo

Linux in a nutshell
Terminal & shell(s)
File system

File system
permissions

Data streams
Processes
Scheduling jobs
Software install
Text editors

Bash shell
scripting
Further resources

76

Bash shell scripting

(@BASH

Conditional statements: The conditional expressions seen in the previous slides can be
used to build conditional statements such as if-then, if-then-else, etc.

Example: if_then.sh
#!/bin/bash
correct_answer="Vienna"
echo "What is the capital of Austria?"
read answer
if [S{answer} == S{correct_answer}]
then
echo "Correct!"
fi # please note the "fi" to close the statement

giorgio@Kubuntu-22 :~/scripts$./if_then.sh
What is the capital of Austria?
Vienna

Correct!
giorgio@Kubuntu-22:~/scripts$ []

<3
TUDelft
3Dgeoinfo

Linux in a nutshell
Terminal & shell(s)
File system

File system
permissions

Data streams
Processes
Scheduling jobs
Software install
Text editors

Bash shell
scripting
Further resources

77

Bash shell scripting

Conditional statement (ctd)

Example: if_then_else.sh

#!/bin/bash

correct_answer="Glera"

echo "Prosecco wine is made with grapes named...?"
read answer

if [S{answer} == S{correct_answer}]
then

echo "Correct! You deserve a glass of Prosecco! :-)"

else

giorgio@Kub «/scripts$./if_then_else.sh
Prosecco wine is made with grapes named...?
Glera

Correct! You deserve a gla55 of Prosecco! :-)
giorgic) cripts$./if_then_ El5e sh
Prose
Sauvignon
Oh no, you seem to lack some basic knowledge :-|(

wine is made w1th grapes named.

echo "Oh no, you seem to lack some basic knowledge :-("

fi

giorgiogKubuntu-22:~/scripts$./case.sh
Enter the name of a Pixar movie:

2 . .
Tubelit Bash shell scripting Toy Story 5

BDQEOinfD Toy Story 5 will be released in 2826
giorgiogKubuntu-22:~/scripts$./case.sh
Conditional statement (Ctd) Enter the name of a Pixar movie:
Toy Story 3
Toy Story 3 tells the adventures of Woody, Buzz etc.
; ; Example: case.sh ngrng@Hubuntu—%E: ?ﬁrtﬁt5$_.fcase.5h
Linux in a nutshell i Enter the name of a Pixar movie:
T : |& h " #'/bm/baSh Monsters Inc.
lermma she (S) echo "Enter the name of a Pixar movie:" wf.th rl-1or_15_.ter'5 Ine_:. y‘DU'.L.!.. fall in love with Boo!
File system read -r pixar_movie # -r allows to have spaces in input [gloeKubuntu-22:~/scripts$./case.sh
F] t Enter the name of a Pixar movie:
lie system case S{pixar_movie} in Wall-E
permiSSionS "Toy Story 5") At the moment, I can't tell you anything about Wall-E...
; . . . giorgio@Kubuntu-22:~/scripts$ l
Data streams echo "${pixar_movie} will be released in 2026"
Processes B
Scheduling jobs "Toy Story" | "Toy Story 2" | "Toy Story 3" | "Toy Story 4")
Software install echo "${pixar_movie} tells the adventures of Woody, Buzz etc."
Text editors i
Bash shell "Monsters Inc.")
scripting echo "With S{pixar_movie} you'll fall in love with Boo!"

Further resources *)
echo "At the moment, | can't tell you anything about ${pixar_movie}..."

esac

78

<3
TUDelft
3Dgeoinfo

Linux in a nutshell
Terminal & shell(s)
File system

File system
permissions

Data streams
Processes
Scheduling jobs
Software install
Text editors

Bash shell
scripting
Further resources

79

Bash shell scripting

loop over lists! Arrays, if applicable, must be cast to lists.

Example: loop.sh
#!/bin/bash
fruits_list="apples kiwis bananas strawberries"
fruits_array=("mangos" "peaches" "apricots
echo "*** |terating over a list"
for fruit in S{fruits_list}
do
echo "Printing: ${fruit}"
done
echo -e "\n"
echo "*** |terating over an array"
for fruit in S{fruits_array[@]} # Array cast to list!
do
echo "Printing: ${fruit}"
done
echo -e "\n"

pears")

giorgit ibuntu-22:~

(@BASH

Loop statements: In Bash there are loops, while-loops, and until-loops. Beware: you

scripts$./loop.sh

#% Tterating over a list

Printing: apples
Printing: kiwis
Printing: bananas

Printing: strawberries

#%% Tterating over an array

Printing: mangos
Printing: peaches
Printing: apricots
Printing: pears

giorgio@Kubuntu-22:

~fscripts$ I

<3
TUDelft
3Dgeoinfo

Linux in a nutshell
Terminal & shell(s)
File system

File system
permissions

Data streams
Processes
Scheduling jobs
Software install
Text editors

Bash shell
scripting
Further resources

80

Bash shell scripting

Example: while_until_loop.sh

#!/bin/bash

echo "*** Example of a while-loop"

counter=1

while [[Scounter -le 5]

do
echo "While-loop counter is: ${counter}"
((counter++))

done

echo -e "\n*** Example of an until-loop"
counter2=1
until [[Scounter2 -gt 5]
do
echo "Until-loop counter is: ${counter2}
((counter2++))
done

giorgiog

(ubuntu-22:~

**=% Example of a while-loop

While-loop counter
While-loop counter
While-loop counter
While-loop counter
While-loop counter

is:

1

is: :
is:
is:
is:

**% Example of an until-loop

Until-loop counter
Until-loop counter
Until-loop counter
Until-loop counter
Until-loop counter

is:
is:
is:

is

ig:

giorgio@Kubuntu-22:~

1

2
|
I |
5
SCI

ipts$ |

scripts$./while_until.sh

fupeit Bash shell scripting (gBASH

3Dgeoinfo
Loop statements (ctd):
Inside a loop statement, you can use commands continue and break. With continue you
Linux in a nutshell can stop the current iteration of the loop and start with the next one.
Terminal & shell(s)
File system Example: continue.sh
File system ;
y . #1/bin/bash giorgio@Kubuntu-22:~/scripts$./break_continue.sh
permissions fornin12345 Current value is: its square is: 1
Data streams Tl Current value is: 2, its square is: 4
Processes : Skipping value 3
Seredilie fohe if [${n}==3] Current value is: 4, its square is:
9] then Current : its square is: .

Software install

giorgio@Kubuntu-22:~/scripts$ I

echo "Skipping value ${n}"

Text editors continue
Bash shell
scripting lse

n_squared= n*sn)) # is called "arithmetic expansion"
Further resources -4 2l(Sn*s ,)) Ul ,)) : P

echo "Current value is: ${n}, its square is: ${n_squared}"

fi
done

81

fupeit Bash shell scripting (gBASH

3Dgeoinfo

Loop statements (ctd):

With break you can exit a loop if a certain condition is met.
Linux in a nutshell
Terminal & shell(s) Example: break.sh

File system #!/bin/bash
File system i
_y) fornin12345 giorgio@Kubuntu-22:~/scripts$./break.sh
permissions do Current value is: 1, its square is: 1
Data streams if [${n}==3] Current wvalue is: 2, its square is: 4
Processes then Skipping value 3
SChedU“nQ jobs echo "Skipping value ${n}" Exiting loop!
Software install echo -e "\nExiting loop!" giorgio@Kubuntu-22:~/scripts$ I
Text editors break
Bas.h §hell .
;c:;ﬁtmg n_squared=5((Sn*$n)) # $(()) is called "arithmetic expansion"
UrtnEr resources echo "Current value is: ${n}, its square is: ${n_squared}"
fi
done

82

3
TUDelit |ndex
3Dgeoinfo

Linux in a nutshell

The terminal and the shell(s)

File system

File system permissions

Data streams

Processes

Scheduling jobs

Installation of software applications

Text editors

Bash shell scripting

Further resources

83

<3
TUDelft
3Dgeoinfo

Linux in a nutshell
Terminal & shell(s)
File system

File system
permissions

Data streams
Processes
Scheduling jobs
Software install
Text editors

Bash shell scripting
Further resources

84

Further resources

* This Introduction is part of TU Delft's GeoGeeks
— https://tudelft3d.github.io/geogeeks/

* "Introduction to Linux", by the Linux Froudation

— https://training.linuxfoundation.org/training/introduction-to-linux/

* "Linux Tutorial", by GeeksforGeeks
— https://www.geeksforgeeks.org/linux-tutorial/

* "Introduction to Linux", by CodeAcademy
— https://www.codecademy.com/learn/introduction-to-linux

https://tudelft3d.github.io/geogeeks/
https://training.linuxfoundation.org/training/introduction-to-linux/
https://www.geeksforgeeks.org/linux-tutorial/
https://www.codecademy.com/learn/introduction-to-linux

_ 4
TUDelft
3Dgeoinfo

Dr. Giorgio Agugiaro
g.agugiaro@tudelft.nl

TUDelft
3Dgeoinfo

3D Geoinformation Group

TU Delft

The Netherlands
https://3d.bk.tudelft.nl/gagugiaro

Acknowledgements

Clara Garcia-Sanchez and Akshay Patil (TU Delft)

mailto:g.agugiaro@tudelft.nl
https://3d.bk.tudelft.nl/gagugiaro

	Slide 1: Introduction to Linux
	Slide 2: License
	Slide 3: Index
	Slide 4: Index
	Slide 5: Linux in a nutshell
	Slide 6: Linux in a nutshell
	Slide 7: Linux in a nutshell
	Slide 8: Users
	Slide 9: Working with Linux
	Slide 10: Working with Linux
	Slide 11: Index
	Slide 12: The terminal and the shell(s)
	Slide 13: The terminal and the Bash shell
	Slide 14: Shell commands
	Slide 15: Some useful shell commands
	Slide 16: Index
	Slide 17: File system
	Slide 18: File system
	Slide 19: File system
	Slide 20: File system
	Slide 21: File system
	Slide 22: File system
	Slide 23: Index
	Slide 24: File system permissions
	Slide 25: File system permissions
	Slide 26: File system permissions
	Slide 27: File system permissions
	Slide 28: File system permissions
	Slide 29: File system permissions
	Slide 30: Index
	Slide 31: Data streams
	Slide 32: Data streams
	Slide 33: Data streams: Redirection
	Slide 34: Data streams: Redirection
	Slide 35: Data streams: Pipes
	Slide 36: Data streams: Filters
	Slide 37: Data streams: Filters
	Slide 38: Chaining operators
	Slide 39: Chaining operators
	Slide 40: Index
	Slide 41: Processes
	Slide 42: Processes
	Slide 43: Processes
	Slide 44: Processes
	Slide 45: Processes
	Slide 46: Processes
	Slide 47: Processes
	Slide 48: Index
	Slide 49: Scheduling jobs
	Slide 50: Scheduling jobs: at
	Slide 51: Scheduling jobs: at
	Slide 52: Scheduling jobs: cron
	Slide 53: Scheduling jobs: cron
	Slide 54: Scheduling jobs: cron
	Slide 55: Index
	Slide 56: Installation of software applications
	Slide 57: Installation from a repository
	Slide 58: Installation from a repository
	Slide 59: Installation from a repository
	Slide 60: Installation from a repository
	Slide 61: Installation from a repository
	Slide 62: Index
	Slide 63: Text editors
	Slide 64: Text editors: Nano
	Slide 65: Text editors: Kate
	Slide 66: Text editors: Visual Studio Code
	Slide 67: Index
	Slide 68: Shell scripting
	Slide 69: Bash shell scripting
	Slide 70: Bash shell scripting
	Slide 71: Bash shell scripting
	Slide 72: Bash shell scripting
	Slide 73: Bash shell scripting
	Slide 74: Bash shell scripting
	Slide 75: Bash shell scripting
	Slide 76: Bash shell scripting
	Slide 77: Bash shell scripting
	Slide 78: Bash shell scripting
	Slide 79: Bash shell scripting
	Slide 80: Bash shell scripting
	Slide 81: Bash shell scripting
	Slide 82: Bash shell scripting
	Slide 83: Index
	Slide 84: Further resources
	Slide 85

